咨询与建议

限定检索结果

文献类型

  • 746 篇 会议
  • 270 篇 期刊文献
  • 4 册 图书

馆藏范围

  • 1,020 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 711 篇 工学
    • 520 篇 计算机科学与技术...
    • 380 篇 电气工程
    • 278 篇 控制科学与工程
    • 153 篇 软件工程
    • 79 篇 信息与通信工程
    • 40 篇 交通运输工程
    • 23 篇 仪器科学与技术
    • 20 篇 机械工程
    • 9 篇 生物工程
    • 8 篇 电子科学与技术(可...
    • 7 篇 力学(可授工学、理...
    • 7 篇 土木工程
    • 6 篇 动力工程及工程热...
    • 6 篇 石油与天然气工程
    • 4 篇 生物医学工程(可授...
    • 3 篇 材料科学与工程(可...
    • 3 篇 化学工程与技术
    • 3 篇 航空宇航科学与技...
    • 3 篇 安全科学与工程
  • 118 篇 理学
    • 98 篇 数学
    • 32 篇 系统科学
    • 22 篇 统计学(可授理学、...
    • 10 篇 生物学
    • 8 篇 物理学
    • 4 篇 化学
  • 66 篇 管理学
    • 63 篇 管理科学与工程(可...
    • 14 篇 工商管理
    • 5 篇 图书情报与档案管...
  • 5 篇 经济学
    • 4 篇 应用经济学
  • 3 篇 法学
    • 3 篇 社会学
  • 2 篇 医学
  • 1 篇 教育学

主题

  • 312 篇 reinforcement le...
  • 216 篇 dynamic programm...
  • 206 篇 optimal control
  • 107 篇 adaptive dynamic...
  • 104 篇 adaptive dynamic...
  • 97 篇 learning
  • 88 篇 neural networks
  • 78 篇 heuristic algori...
  • 68 篇 reinforcement le...
  • 58 篇 learning (artifi...
  • 54 篇 nonlinear system...
  • 53 篇 convergence
  • 51 篇 control systems
  • 51 篇 mathematical mod...
  • 48 篇 approximate dyna...
  • 44 篇 approximation al...
  • 43 篇 equations
  • 42 篇 adaptive control
  • 41 篇 artificial neura...
  • 41 篇 cost function

机构

  • 41 篇 chinese acad sci...
  • 27 篇 univ rhode isl d...
  • 17 篇 tianjin univ sch...
  • 16 篇 univ sci & techn...
  • 16 篇 univ illinois de...
  • 15 篇 northeastern uni...
  • 14 篇 beijing normal u...
  • 13 篇 northeastern uni...
  • 13 篇 guangdong univ t...
  • 12 篇 northeastern uni...
  • 9 篇 natl univ def te...
  • 8 篇 ieee
  • 8 篇 univ chinese aca...
  • 7 篇 univ chinese aca...
  • 7 篇 cent south univ ...
  • 7 篇 southern univ sc...
  • 7 篇 beijing univ tec...
  • 6 篇 chinese acad sci...
  • 6 篇 missouri univ sc...
  • 5 篇 nanjing univ pos...

作者

  • 54 篇 liu derong
  • 37 篇 wei qinglai
  • 29 篇 he haibo
  • 22 篇 wang ding
  • 21 篇 xu xin
  • 19 篇 jiang zhong-ping
  • 17 篇 lewis frank l.
  • 17 篇 yang xiong
  • 17 篇 zhang huaguang
  • 17 篇 ni zhen
  • 16 篇 zhao bo
  • 15 篇 gao weinan
  • 14 篇 zhao dongbin
  • 13 篇 zhong xiangnan
  • 12 篇 si jennie
  • 12 篇 derong liu
  • 10 篇 jagannathan s.
  • 10 篇 dongbin zhao
  • 10 篇 song ruizhuo
  • 9 篇 abouheaf mohamme...

语言

  • 994 篇 英文
  • 20 篇 其他
  • 6 篇 中文
检索条件"任意字段=IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning"
1020 条 记 录,以下是591-600 订阅
排序:
Model-based multi-objective reinforcement learning
Model-based multi-objective reinforcement learning
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning, (ADPRL)
作者: Marco A. Wiering Maikel Withagen Mădălina M Drugan Institute of Artificial Intelligence University of Groningen The Netherlands Artificial Intelligence Lab Vrije Universiteit Brussel Belgium
This paper describes a novel multi-objective reinforcement learning algorithm. The proposed algorithm first learns a model of the multi-objective sequential decision making problem, after which this learned model is u... 详细信息
来源: 评论
adaptive dynamic programming for discrete-time LQR optimal tracking control problems with unknown dynamics
Adaptive dynamic programming for discrete-time LQR optimal t...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning, (ADPRL)
作者: Yang Liu Yanhong Luo Huaguang Zhang School of Information Science and Engineering Northeastern University Shenyang Liaoning China
In this paper, an optimal tracking control approach based on adaptive dynamic programming (ADP) algorithm is proposed to solve the linear quadratic regulation (LQR) problems for unknown discrete-time systems in an onl... 详细信息
来源: 评论
Near-optimality bounds for greedy periodic policies with application to grid-level storage
Near-optimality bounds for greedy periodic policies with app...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning, (ADPRL)
作者: Yuhai Hu Boris Defourny Department of Industrial & Systems Engineering Lehigh University USA
This paper is concerned with periodic Markov Decision Processes, as a simplified but already rich model for nonstationary infinite-horizon problems involving seasonal effects. Considering the class of policies greedy ... 详细信息
来源: 评论
Tunable and generic problem instance generation for multi-objective reinforcement learning
Tunable and generic problem instance generation for multi-ob...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning, (ADPRL)
作者: Deon Garrett Jordi Bieger Kristinn R. Thórisson Icelandic Institute for Intelligent Machines Reykjavík University Iceland
A significant problem facing researchers in reinforcement learning, and particularly in multi-objective learning, is the dearth of good benchmarks. In this paper, we present a method and software tool enabling the cre... 详细信息
来源: 评论
Continuous-time differential dynamic programming with terminal constraints
Continuous-time differential dynamic programming with termin...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning, (ADPRL)
作者: Wei Sun Evangelos A. Theodorou Panagiotis Tsiotras Mobile and Internet Systems Laboratory University College Cork Ireland
In this work, we revisit the continuous-time Differential dynamic programming (DDP) approach for solving optimal control problems with terminal state constraints. We derive two algorithms, each for different order of ... 详细信息
来源: 评论
On-policy Q-learning for adaptive optimal control
On-policy Q-learning for adaptive optimal control
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning, (ADPRL)
作者: Sumit Kumar Jha Shubhendu Bhasin Department of Electrical Engineering Indian Institute of Technology Delhi New Delhi India
This paper presents a novel on-policy Q-learning approach for finding the optimal control policy online for continuous-time linear time invariant (LTI) systems with completely unknown dynamics. The proposed result est... 详细信息
来源: 评论
Using supervised training signals of observable state dynamics to speed-up and improve reinforcement learning
Using supervised training signals of observable state dynami...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning, (ADPRL)
作者: Daniel L Elliott Charles Anderson Dept of Computer Science Colorado State University
A common complaint about reinforcement learning (RL) is that it is too slow to learn a value function which gives good performance. This issue is exacerbated in continuous state spaces. This paper presents a straight-... 详细信息
来源: 评论
Using approximate dynamic programming for estimating the revenues of a hydrogen-based high-capacity storage device
Using approximate dynamic programming for estimating the rev...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning, (ADPRL)
作者: Vincent François-Lavet Raphael Fonteneau Damien Ernst Department of Electrical Engineering and Computer Science University of Liège Belgium
This paper proposes a methodology to estimate the maximum revenue that can be generated by a company that operates a high-capacity storage device to buy or sell electricity on the day-ahead electricity market. The met... 详细信息
来源: 评论
Neural-network-based adaptive dynamic surface control for MIMO systems with unknown hysteresis
Neural-network-based adaptive dynamic surface control for MI...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning, (ADPRL)
作者: Lei Liu Zhanshan Wang Zhengwei Shen College of Information Science and Engineering Northeastern University Shenyang Liaoning China
This paper focuses on the composite adaptive tracking control for a class of nonlinear multiple-input-multiple-output (MIMO) systems with unknown backlash-like hysteresis nonlinearities. A dynamic surface control meth... 详细信息
来源: 评论
Convergent reinforcement learning control with neural networks and continuous action search
Convergent reinforcement learning control with neural networ...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning, (ADPRL)
作者: Minwoo Lee Charles W. Anderson Department of Computer Science Colorado State University Fort Collins CO USA
We combine a convergent TD-learning method and direct continuous action search with neural networks for function approximation to obtain both stability and generalization over inexperienced state-action pairs. We exte... 详细信息
来源: 评论