咨询与建议

限定检索结果

文献类型

  • 746 篇 会议
  • 270 篇 期刊文献
  • 4 册 图书

馆藏范围

  • 1,020 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 711 篇 工学
    • 520 篇 计算机科学与技术...
    • 380 篇 电气工程
    • 278 篇 控制科学与工程
    • 153 篇 软件工程
    • 79 篇 信息与通信工程
    • 40 篇 交通运输工程
    • 23 篇 仪器科学与技术
    • 20 篇 机械工程
    • 9 篇 生物工程
    • 8 篇 电子科学与技术(可...
    • 7 篇 力学(可授工学、理...
    • 7 篇 土木工程
    • 6 篇 动力工程及工程热...
    • 6 篇 石油与天然气工程
    • 4 篇 生物医学工程(可授...
    • 3 篇 材料科学与工程(可...
    • 3 篇 化学工程与技术
    • 3 篇 航空宇航科学与技...
    • 3 篇 安全科学与工程
  • 118 篇 理学
    • 98 篇 数学
    • 32 篇 系统科学
    • 22 篇 统计学(可授理学、...
    • 10 篇 生物学
    • 8 篇 物理学
    • 4 篇 化学
  • 66 篇 管理学
    • 63 篇 管理科学与工程(可...
    • 14 篇 工商管理
    • 5 篇 图书情报与档案管...
  • 5 篇 经济学
    • 4 篇 应用经济学
  • 3 篇 法学
    • 3 篇 社会学
  • 2 篇 医学
  • 1 篇 教育学

主题

  • 312 篇 reinforcement le...
  • 216 篇 dynamic programm...
  • 206 篇 optimal control
  • 107 篇 adaptive dynamic...
  • 104 篇 adaptive dynamic...
  • 97 篇 learning
  • 88 篇 neural networks
  • 78 篇 heuristic algori...
  • 68 篇 reinforcement le...
  • 58 篇 learning (artifi...
  • 54 篇 nonlinear system...
  • 53 篇 convergence
  • 51 篇 control systems
  • 51 篇 mathematical mod...
  • 48 篇 approximate dyna...
  • 44 篇 approximation al...
  • 43 篇 equations
  • 42 篇 adaptive control
  • 41 篇 artificial neura...
  • 41 篇 cost function

机构

  • 41 篇 chinese acad sci...
  • 27 篇 univ rhode isl d...
  • 17 篇 tianjin univ sch...
  • 16 篇 univ sci & techn...
  • 16 篇 univ illinois de...
  • 15 篇 northeastern uni...
  • 14 篇 beijing normal u...
  • 13 篇 northeastern uni...
  • 13 篇 guangdong univ t...
  • 12 篇 northeastern uni...
  • 9 篇 natl univ def te...
  • 8 篇 ieee
  • 8 篇 univ chinese aca...
  • 7 篇 univ chinese aca...
  • 7 篇 cent south univ ...
  • 7 篇 southern univ sc...
  • 7 篇 beijing univ tec...
  • 6 篇 chinese acad sci...
  • 6 篇 missouri univ sc...
  • 5 篇 nanjing univ pos...

作者

  • 54 篇 liu derong
  • 37 篇 wei qinglai
  • 29 篇 he haibo
  • 22 篇 wang ding
  • 21 篇 xu xin
  • 19 篇 jiang zhong-ping
  • 17 篇 lewis frank l.
  • 17 篇 yang xiong
  • 17 篇 zhang huaguang
  • 17 篇 ni zhen
  • 16 篇 zhao bo
  • 15 篇 gao weinan
  • 14 篇 zhao dongbin
  • 13 篇 zhong xiangnan
  • 12 篇 si jennie
  • 12 篇 derong liu
  • 10 篇 jagannathan s.
  • 10 篇 dongbin zhao
  • 10 篇 song ruizhuo
  • 9 篇 abouheaf mohamme...

语言

  • 994 篇 英文
  • 20 篇 其他
  • 6 篇 中文
检索条件"任意字段=IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning"
1020 条 记 录,以下是621-630 订阅
排序:
Finite-Approximation-Error-Based Discrete-Time Iterative adaptive dynamic programming
收藏 引用
ieee TRANSACTIONS ON CYBERNETICS 2014年 第12期44卷 2820-2833页
作者: Wei, Qinglai Wang, Fei-Yue Liu, Derong Yang, Xiong Chinese Acad Sci Inst Automat State Key Lab Management & Control Complex Syst Beijing 100190 Peoples R China
In this paper, a new iterative adaptive dynamic programming (ADP) algorithm is developed to solve optimal control problems for infinite horizon discrete-time nonlinear systems with finite approximation errors. First, ... 详细信息
来源: 评论
Exploring the Relationship of Reward and Punishment in reinforcement learning Evolving Action Meta-learning Functions in Goal Navigation
Exploring the Relationship of Reward and Punishment in Reinf...
收藏 引用
4th ieee International symposium on adaptive dynamic programming and reinforcement learning (ADPRL)
作者: Lowe, Robert Ziemke, Tom Univ Skovde Interact Lab Skovde Sweden
We present a reinforcement learning algorithm based on Dyna-Sarsa that utilizes separate representations of reward and punishment when guiding state-action value learning and action selection. The adoption of policy m... 详细信息
来源: 评论
Exponential Moving Average Q-learning Algorithm
Exponential Moving Average Q-Learning Algorithm
收藏 引用
4th ieee International symposium on adaptive dynamic programming and reinforcement learning (ADPRL)
作者: Awheda, Mostafa D. Schwartz, Howard M. Carleton Univ Dept Syst & Comp Engn Ottawa ON K1S 5B6 Canada
A multi-agent policy iteration learning algorithm is proposed in this work. The Exponential Moving Average (EMA) mechanism is used to update the policy for a Q-learning agent so that it converges to an optimal policy ... 详细信息
来源: 评论
Optimal control for a class of nonlinear systems with state delay based on adaptive dynamic programming with ε-error bound
Optimal control for a class of nonlinear systems with state ...
收藏 引用
4th ieee International symposium on adaptive dynamic programming and reinforcement learning (ADPRL)
作者: Lin, Xiaofeng Cao, Nuyun Lin, Yuzhang Guangxi Univ Sch Elect Engn Nanning 530004 Peoples R China Tsinghua Univ Dept Elect Engn Beijing Peoples R China
In this paper, a finite-horizon epsilon-optimal control for a class of nonlinear systems with state delay is proposed by adaptive dynamic programming (ADP) algorithm. First of all, the performance index function is de... 详细信息
来源: 评论
reinforcement learning Output Feedback NN Control Using Deterministic learning Technique
收藏 引用
ieee TRANSACTIONS ON NEURAL NETWORKS AND learning SYSTEMS 2014年 第3期25卷 635-641页
作者: Xu, Bin Yang, Chenguang Shi, Zhongke Northwestern Polytech Univ Sch Automat Xian 710072 Peoples R China Univ Plymouth Sch Comp & Math Plymouth PL4 8AA Devon England Beijing Inst Technol Sch Automat Beijing 100086 Peoples R China
In this brief, a novel adaptive-critic-based neural network (NN) controller is investigated for nonlinear pure-feedback systems. The controller design is based on the transformed predictor form, and the actor-critic N... 详细信息
来源: 评论
Finite-Horizon Optimal Control Design for Uncertain Linear Discrete-time Systems
Finite-Horizon Optimal Control Design for Uncertain Linear D...
收藏 引用
4th ieee International symposium on adaptive dynamic programming and reinforcement learning (ADPRL)
作者: Zhao, Qiming Xu, Hao Jagannathan, S. Missouri Univ S&T Dept Elect & Comp Engn Rolla MO 65409 USA
In this paper, the finite-horizon optimal adaptive control design for linear discrete-time systems with unknown system dynamics by using adaptive dynamic programming (ADP) is presented. In the presence of full state f... 详细信息
来源: 评论
Impact of signal transmission delays on power system damping control using heuristic dynamic programming
Impact of signal transmission delays on power system damping...
收藏 引用
ieee symposium on Computational Intelligence Applications In Smart Grid (CIASG)
作者: Yufei Tang Xiangnan Zhong Zhen Ni Jun Yan Haibo He Department of Electrical University of Rhode Island Kingston RI USA
In this paper, the impact of signal transmission delays on static VAR compensator (SVC) based power system damping control using reinforcement learning is investigated. The SVC is used to damp low-frequency oscillatio... 详细信息
来源: 评论
Finite Horizon Stochastic Optimal Control of Uncertain Linear Networked Control System
Finite Horizon Stochastic Optimal Control of Uncertain Linea...
收藏 引用
4th ieee International symposium on adaptive dynamic programming and reinforcement learning (ADPRL)
作者: Xu, Hao Jagannathan, S. Missouri Univ Sci & Technol Dept Elect & Comp Engn Rolla MO 65409 USA
In this paper, finite horizon stochastic optimal control issue has been studied for linear networked control system (LNCS) in the presence of network imperfections such as network-induced delays and packet losses by u... 详细信息
来源: 评论
adaptive dynamic programming for terminally constrained finite-horizon optimal control problems
Adaptive dynamic programming for terminally constrained fini...
收藏 引用
ieee Annual Conference on Decision and Control
作者: L. Andrews J. R. Klotz R. Kamalapurkar W. E. Dixon Department of Mechanical and Aerospace Engineering University of Florida Gainesville FL USA
adaptive dynamic programming is applied to control-affine nonlinear systems with uncertain drift dynamics to obtain a near-optimal solution to a finite-horizon optimal control problem with hard terminal constraints. A... 详细信息
来源: 评论
Free Energy based Policy Gradients
Free Energy based Policy Gradients
收藏 引用
4th ieee International symposium on adaptive dynamic programming and reinforcement learning (ADPRL)
作者: Theodorou, Evangelos A. Najemnik, Jiri Todorov, Emo Univ Washington Dept Comp Sci & Engn Seattle WA 98195 USA Univ Washington Dept Appl Math Seattle WA 98195 USA
Despite the plethora of reinforcement learning algorithms in machine learning and control, the majority of the work in this area relies on discrete time formulations of stochastic dynamics. In this work we present a n... 详细信息
来源: 评论