咨询与建议

限定检索结果

文献类型

  • 746 篇 会议
  • 270 篇 期刊文献
  • 4 册 图书

馆藏范围

  • 1,020 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 711 篇 工学
    • 520 篇 计算机科学与技术...
    • 380 篇 电气工程
    • 278 篇 控制科学与工程
    • 153 篇 软件工程
    • 79 篇 信息与通信工程
    • 40 篇 交通运输工程
    • 23 篇 仪器科学与技术
    • 20 篇 机械工程
    • 9 篇 生物工程
    • 8 篇 电子科学与技术(可...
    • 7 篇 力学(可授工学、理...
    • 7 篇 土木工程
    • 6 篇 动力工程及工程热...
    • 6 篇 石油与天然气工程
    • 4 篇 生物医学工程(可授...
    • 3 篇 材料科学与工程(可...
    • 3 篇 化学工程与技术
    • 3 篇 航空宇航科学与技...
    • 3 篇 安全科学与工程
  • 118 篇 理学
    • 98 篇 数学
    • 32 篇 系统科学
    • 22 篇 统计学(可授理学、...
    • 10 篇 生物学
    • 8 篇 物理学
    • 4 篇 化学
  • 66 篇 管理学
    • 63 篇 管理科学与工程(可...
    • 14 篇 工商管理
    • 5 篇 图书情报与档案管...
  • 5 篇 经济学
    • 4 篇 应用经济学
  • 3 篇 法学
    • 3 篇 社会学
  • 2 篇 医学
  • 1 篇 教育学

主题

  • 312 篇 reinforcement le...
  • 216 篇 dynamic programm...
  • 206 篇 optimal control
  • 107 篇 adaptive dynamic...
  • 104 篇 adaptive dynamic...
  • 97 篇 learning
  • 88 篇 neural networks
  • 78 篇 heuristic algori...
  • 68 篇 reinforcement le...
  • 58 篇 learning (artifi...
  • 54 篇 nonlinear system...
  • 53 篇 convergence
  • 51 篇 control systems
  • 51 篇 mathematical mod...
  • 48 篇 approximate dyna...
  • 44 篇 approximation al...
  • 43 篇 equations
  • 42 篇 adaptive control
  • 41 篇 artificial neura...
  • 41 篇 cost function

机构

  • 41 篇 chinese acad sci...
  • 27 篇 univ rhode isl d...
  • 17 篇 tianjin univ sch...
  • 16 篇 univ sci & techn...
  • 16 篇 univ illinois de...
  • 15 篇 northeastern uni...
  • 14 篇 beijing normal u...
  • 13 篇 northeastern uni...
  • 13 篇 guangdong univ t...
  • 12 篇 northeastern uni...
  • 9 篇 natl univ def te...
  • 8 篇 ieee
  • 8 篇 univ chinese aca...
  • 7 篇 univ chinese aca...
  • 7 篇 cent south univ ...
  • 7 篇 southern univ sc...
  • 7 篇 beijing univ tec...
  • 6 篇 chinese acad sci...
  • 6 篇 missouri univ sc...
  • 5 篇 nanjing univ pos...

作者

  • 54 篇 liu derong
  • 37 篇 wei qinglai
  • 29 篇 he haibo
  • 22 篇 wang ding
  • 21 篇 xu xin
  • 19 篇 jiang zhong-ping
  • 17 篇 lewis frank l.
  • 17 篇 yang xiong
  • 17 篇 zhang huaguang
  • 17 篇 ni zhen
  • 16 篇 zhao bo
  • 15 篇 gao weinan
  • 14 篇 zhao dongbin
  • 13 篇 zhong xiangnan
  • 12 篇 si jennie
  • 12 篇 derong liu
  • 10 篇 jagannathan s.
  • 10 篇 dongbin zhao
  • 10 篇 song ruizhuo
  • 9 篇 abouheaf mohamme...

语言

  • 994 篇 英文
  • 20 篇 其他
  • 6 篇 中文
检索条件"任意字段=IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning"
1020 条 记 录,以下是671-680 订阅
排序:
A study on the efficiency of learning a robot controller in various environments
A study on the efficiency of learning a robot controller in ...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning, (ADPRL)
作者: Sachiko Soga Ichiro Kobayashi Advanced Sciences Ochanomizu University Tokyo
In the case that a robot controller is trained by means of evolutionary computation, the robot will be able to behave sufficiently in the environment where the robot has been trained. However, if the robot is put in a... 详细信息
来源: 评论
reinforcement learning in the game of Othello: learning against a fixed opponent and learning from self-play
Reinforcement learning in the game of Othello: Learning agai...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning, (ADPRL)
作者: Michiel van der Ree Marco Wiering Faculty of Mathematics and Natural Sciences University of Groningen Institute of Artificial Intelligence and Cognitive Engineering The Netherlands
This paper compares three strategies in using reinforcement learning algorithms to let an artificial agent learn to play the game of Othello. The three strategies that are compared are: learning by self-play, learning... 详细信息
来源: 评论
Optimistic planning for continuous-action deterministic systems
Optimistic planning for continuous-action deterministic syst...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning, (ADPRL)
作者: Lucian Buşoniu Alexander Daniels Rémi Munos Robert Babuška Department of Automation Technical University of Cluj-Napoca Romania France DCSC Delft University of Technology the Netherlands Team SequeL INRIA Lille-Nord Europe France
We consider the class of online planning algorithms for optimal control, which compared to dynamic programming are relatively unaffected by large state dimensionality. We introduce a novel planning algorithm called SO... 详细信息
来源: 评论
Delayed insertion and rule effect moderation of domain knowledge for reinforcement learning
Delayed insertion and rule effect moderation of domain knowl...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning, (ADPRL)
作者: Teck-Hou Teng Ah-Hwee Tan School of Computer Engineering Center for Computational Intelligence School of Computer Engineering Nanyang Technological University
Though not a fundamental pre-requisite to efficient machine learning, insertion of domain knowledge into adaptive virtual agent is nonetheless known to improve learning efficiency and reduce model complexity. Conventi... 详细信息
来源: 评论
reinforcement learning to train Ms. Pac-Man using higher-order action-relative inputs
Reinforcement learning to train Ms. Pac-Man using higher-ord...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning, (ADPRL)
作者: Luuk Bom Ruud Henken Marco Wiering Faculty of Mathematics and Natural Sciences University of Groningen The Netherlands
reinforcement learning algorithms enable an agent to optimize its behavior from interacting with a specific environment. Although some very successful applications of reinforcement learning algorithms have been develo... 详细信息
来源: 评论
Analyzing collective behavior in evolutionary swarm robotic systems based on an ethological approach
Analyzing collective behavior in evolutionary swarm robotic ...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning, (ADPRL)
作者: Toshiyuki Yasuda Nanami Wada Kazuhiro Ohkura Yoshiyuki Matsumura Graduate School of Engineering Hiroshima University Higashi-Hiroshima JAPAN Faculty of Textile Science and Technology Shinshu University Ueda Nagano JAPAN
Swarm robotic systems are a type of multi-robot systems which generally consist of many homogeneous autonomous robots without any type of global controllers. Swarm robotics aims at designing desired collective behavio... 详细信息
来源: 评论
Robust adaptive dynamic programming With an Application to Power Systems
收藏 引用
ieee TRANSACTIONS ON NEURAL NETWORKS AND learning SYSTEMS 2013年 第7期24卷 1150-1156页
作者: Jiang, Yu Jiang, Zhong-Ping NYU Polytech Inst Dept Elect & Comp Engn Brooklyn NY 11201 USA
This brief presents a novel framework of robust adaptive dynamic programming (robust-ADP) aimed at computing globally stabilizing and suboptimal control policies in the presence of dynamic uncertainties. A key strateg... 详细信息
来源: 评论
Cooperative off-policy prediction of Markov decision processes in adaptive networks
Cooperative off-policy prediction of Markov decision process...
收藏 引用
2013 38th ieee International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2013
作者: Macua, Sergio Valcarcel Chen, Jianshu Zazo, Santiago Sayed, Ali H. Escuela Técnica Superior de Ingenieros de Telecomunicación Universidad Politécnica de Madrid Madrid 28040 Spain Department of Electrical Engineering University of California Los Angeles CA 90095 United States
We apply diffusion strategies to propose a cooperative reinforcement learning algorithm, in which agents in a network communicate with their neighbors to improve predictions about their environment. The algorithm is s... 详细信息
来源: 评论
Optimal tracking control scheme for discrete-time nonlinear systems with approximation errors
Optimal tracking control scheme for discrete-time nonlinear ...
收藏 引用
10th International symposium on Neural Networks, ISNN 2013
作者: Wei, Qinglai Liu, Derong State Key Laboratory of Management and Control for Complex Systems Institute of Automation Chinese Academy of Sciences Beijing 100190 China
In this paper, we aim to solve an infinite-time optimal tracking control problem for a class of discrete-time nonlinear systems using iterative adaptive dynamic programming (ADP) algorithm. When the iterative tracking... 详细信息
来源: 评论
COOPERATIVE OFF-POLICY PREDICTION OF MARKOV DECISION PROCESSES IN adaptive NETWORKS
COOPERATIVE OFF-POLICY PREDICTION OF MARKOV DECISION PROCESS...
收藏 引用
ieee International Conference on Acoustics, Speech, and Signal Processing
作者: Sergio Valcarcel Macua Jianshu Chen Santiago Zazo Ali H. Sayed Escuela Tecnica Superior de Ingenieros de Telecomunicacion Universidad Politecnica de Madrid Madrid 28040 Spain Department of Electrical Engineering University of California Los Angeles CA 90095 USA
We apply diffusion strategies to propose a cooperative reinforcement learning algorithm, in which agents in a network communicate with their neighbors to improve predictions about their environment. The algorithm is s... 详细信息
来源: 评论