咨询与建议

限定检索结果

文献类型

  • 743 篇 会议
  • 265 篇 期刊文献
  • 4 册 图书

馆藏范围

  • 1,012 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 704 篇 工学
    • 517 篇 计算机科学与技术...
    • 376 篇 电气工程
    • 275 篇 控制科学与工程
    • 152 篇 软件工程
    • 79 篇 信息与通信工程
    • 39 篇 交通运输工程
    • 23 篇 仪器科学与技术
    • 20 篇 机械工程
    • 9 篇 生物工程
    • 8 篇 电子科学与技术(可...
    • 7 篇 力学(可授工学、理...
    • 6 篇 动力工程及工程热...
    • 6 篇 石油与天然气工程
    • 5 篇 土木工程
    • 4 篇 航空宇航科学与技...
    • 4 篇 生物医学工程(可授...
    • 3 篇 材料科学与工程(可...
    • 3 篇 化学工程与技术
    • 3 篇 安全科学与工程
  • 119 篇 理学
    • 99 篇 数学
    • 33 篇 系统科学
    • 22 篇 统计学(可授理学、...
    • 10 篇 生物学
    • 8 篇 物理学
    • 4 篇 化学
  • 65 篇 管理学
    • 62 篇 管理科学与工程(可...
    • 15 篇 工商管理
    • 5 篇 图书情报与档案管...
  • 5 篇 经济学
    • 4 篇 应用经济学
  • 3 篇 法学
    • 3 篇 社会学
  • 2 篇 教育学
  • 2 篇 医学

主题

  • 308 篇 reinforcement le...
  • 213 篇 dynamic programm...
  • 202 篇 optimal control
  • 105 篇 adaptive dynamic...
  • 104 篇 adaptive dynamic...
  • 97 篇 learning
  • 87 篇 neural networks
  • 73 篇 heuristic algori...
  • 68 篇 reinforcement le...
  • 58 篇 learning (artifi...
  • 54 篇 nonlinear system...
  • 52 篇 control systems
  • 51 篇 convergence
  • 51 篇 mathematical mod...
  • 48 篇 approximate dyna...
  • 44 篇 approximation al...
  • 43 篇 equations
  • 43 篇 adaptive control
  • 40 篇 artificial neura...
  • 40 篇 cost function

机构

  • 41 篇 chinese acad sci...
  • 27 篇 univ rhode isl d...
  • 17 篇 tianjin univ sch...
  • 16 篇 univ sci & techn...
  • 16 篇 univ illinois de...
  • 15 篇 northeastern uni...
  • 14 篇 beijing normal u...
  • 13 篇 northeastern uni...
  • 12 篇 northeastern uni...
  • 12 篇 guangdong univ t...
  • 9 篇 natl univ def te...
  • 8 篇 ieee
  • 8 篇 univ chinese aca...
  • 7 篇 univ chinese aca...
  • 7 篇 cent south univ ...
  • 7 篇 southern univ sc...
  • 6 篇 chinese acad sci...
  • 6 篇 missouri univ sc...
  • 6 篇 beijing univ tec...
  • 5 篇 nanjing univ pos...

作者

  • 54 篇 liu derong
  • 37 篇 wei qinglai
  • 29 篇 he haibo
  • 21 篇 xu xin
  • 21 篇 wang ding
  • 19 篇 jiang zhong-ping
  • 17 篇 yang xiong
  • 17 篇 zhang huaguang
  • 17 篇 ni zhen
  • 16 篇 lewis frank l.
  • 16 篇 zhao bo
  • 15 篇 gao weinan
  • 14 篇 zhao dongbin
  • 13 篇 zhong xiangnan
  • 12 篇 si jennie
  • 11 篇 derong liu
  • 10 篇 jagannathan s.
  • 10 篇 dongbin zhao
  • 9 篇 song ruizhuo
  • 9 篇 abouheaf mohamme...

语言

  • 986 篇 英文
  • 20 篇 其他
  • 6 篇 中文
检索条件"任意字段=IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning"
1012 条 记 录,以下是61-70 订阅
排序:
Feature Discovery in Approximate dynamic programming
Feature Discovery in Approximate Dynamic Programming
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning
作者: Preux, Philippe Girgin, Sertan Loth, Manuel Univ Lille Lab Informat Fondamentale Lille Comp Sci Lab CNRS Lille France INRIA Paris France
Feature discovery aims at finding the best representation of data. This is a very important topic in machine learning, and in reinforcement learning in particular. Based on our recent work on feature discovery in the ... 详细信息
来源: 评论
An approximate dynamic programming strategy for responsive traffic signal control
An approximate dynamic programming strategy for responsive t...
收藏 引用
ieee International symposium on Approximate dynamic programming and reinforcement learning
作者: Cai, Chen Univ Coll London Ctr Transport Studies London WC1E 6BT England
This paper proposes an approximate dynamic programming strategy for responsive traffic signal control. It is the first attempt that optimizes signal control objective dynamically through adaptive approximation of valu... 详细信息
来源: 评论
Recent Progress in reinforcement learning and adaptive dynamic programming for Advanced Control Applications
收藏 引用
ieee/CAA Journal of Automatica Sinica 2024年 第1期11卷 18-36页
作者: Ding Wang Ning Gao Derong Liu Jinna Li Frank L.Lewis IEEE the Faculty of Information Technology Beijing Key Laboratory of Computational Intelligence and Intelligent SystemBeijing Laboratory of Smart Environmental Protectionand Beijing Institute of Artificial IntelligenceBeijing University of TechnologyBeijing 100124China the School of System Design and Intelligent Manufacturing Southern University of Science and TechnologyShenzhen 518055China the Department of Electrical and Computer Engineering University of Illinois at ChicagoChicago IL 60607 USA the School of Information and Control Engineering Liaoning Petrochemical UniversityFushun 113001China the UTA Research Institute the University of Texas at ArlingtonArlington TX 76118 USA
reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and ... 详细信息
来源: 评论
reinforcement learning for Linear Continuous-time Systems: an Incremental learning Approach
收藏 引用
ieee/CAA Journal of Automatica Sinica 2019年 第2期6卷 433-440页
作者: Tao Bian Zhong-Ping Jiang Bank of America Merrill Lynch IEEE the Control and Networks Lab Department of Electrical and Computer Engineering Tandon School of Engineering New York University
In this paper, we introduce a novel reinforcement learning(RL) scheme for linear continuous-time dynamical systems. Different from traditional batch learning algorithms,an incremental learning approach is developed, w... 详细信息
来源: 评论
A Data-based Online reinforcement learning Algorithm with High-efficient Exploration
A Data-based Online Reinforcement Learning Algorithm with Hi...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning (ADPRL)
作者: Zhu, Yuanheng Zhao, Dongbin Chinese Acad Sci Inst Automat State Key Lab Management & Control Complex Syst Beijing Peoples R China
An online reinforcement learning algorithm is proposed in this paper to directly utilizes online data efficiently for continuous deterministic systems without system parameters. The dependence on some specific approxi... 详细信息
来源: 评论
Particle swarm optimized adaptive dynamic programming
Particle swarm optimized adaptive dynamic programming
收藏 引用
ieee International symposium on Approximate dynamic programming and reinforcement learning
作者: Dongbin Zhao Jianqiang Yi Liu, Derong Chinese Acad Sci Inst Automat Key Lab Complex Syst & Intelligence Sci Beijing 100080 Peoples R China Univ Illinois Dept Elect & Comp Engn Chicago IL 60607 USA
Particle swarm optimization is used for the training of the action network and critic network of the adaptive dynamic programming approach. The typical structures of the adaptive dynamic programming and particle swarm... 详细信息
来源: 评论
adaptive dynamic programming-based optimal tracking control for nonlinear systems using general value iteration
Adaptive dynamic programming-based optimal tracking control ...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning (ADPRL)
作者: Lin, Xiaofeng Ding, Qiang Kong, Weikai Song, Chunning Huang, Qingbao Guangxi Univ Sch Elect Engn Nanning Peoples R China
For the optimal tracking control problem of affine nonlinear systems, a general value iteration algorithm based on adaptive dynamic programming is proposed in this paper. By system transformation, the optimal tracking... 详细信息
来源: 评论
Gr-GDHP: A New Architecture for Globalized Dual Heuristic dynamic programming
收藏 引用
ieee TRANSACTIONS ON CYBERNETICS 2017年 第10期47卷 3318-3330页
作者: Zhong, Xiangnan Ni, Zhen He, Haibo Univ Rhode Isl Dept Elect Comp & Biomed Engn Kingston RI 02881 USA South Dakota State Univ Dept Elect Engn & Comp Sci Brooking SD 57007 USA
Goal representation globalized dual heuristic dynamic programming (Gr-GDHP) method is proposed in this paper. A goal neural network is integrated into the traditional GDHP method providing an internal reinforcement si... 详细信息
来源: 评论
An adaptive dynamic programming Algorithm to Solve Optimal Control of Uncertain Nonlinear Systems
An Adaptive Dynamic Programming Algorithm to Solve Optimal C...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning (ADPRL)
作者: Cui, Xiaohong Luo, Yanhong Zhang, Huaguang Northeastern Univ Sch Informat Sci & Engn Shenyang 110819 Liaoning Peoples R China
In this paper, an approximate optimal control method based on adaptive dynamic programming(ADP) is discussed for completely unknown nonlinear system. An online critic-action-identifier algorithm is developed using neu... 详细信息
来源: 评论
Model-Based Multi-Objective reinforcement learning
Model-Based Multi-Objective Reinforcement Learning
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning (ADPRL)
作者: Wiering, Marco A. Withagen, Maikel Drugan, Madalina M. Univ Groningen Inst Artificial Intelligence NL-9700 AB Groningen Netherlands Vrije Univ Brussel Artificial Intelligence Lab Ixelles Brunei
This paper describes a novel multi-objective reinforcement learning algorithm. The proposed algorithm first learns a model of the multi-objective sequential decision making problem, after which this learned model is u... 详细信息
来源: 评论