咨询与建议

限定检索结果

文献类型

  • 746 篇 会议
  • 270 篇 期刊文献
  • 4 册 图书

馆藏范围

  • 1,020 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 711 篇 工学
    • 520 篇 计算机科学与技术...
    • 380 篇 电气工程
    • 278 篇 控制科学与工程
    • 153 篇 软件工程
    • 79 篇 信息与通信工程
    • 40 篇 交通运输工程
    • 23 篇 仪器科学与技术
    • 20 篇 机械工程
    • 9 篇 生物工程
    • 8 篇 电子科学与技术(可...
    • 7 篇 力学(可授工学、理...
    • 7 篇 土木工程
    • 6 篇 动力工程及工程热...
    • 6 篇 石油与天然气工程
    • 4 篇 生物医学工程(可授...
    • 3 篇 材料科学与工程(可...
    • 3 篇 化学工程与技术
    • 3 篇 航空宇航科学与技...
    • 3 篇 安全科学与工程
  • 118 篇 理学
    • 98 篇 数学
    • 32 篇 系统科学
    • 22 篇 统计学(可授理学、...
    • 10 篇 生物学
    • 8 篇 物理学
    • 4 篇 化学
  • 66 篇 管理学
    • 63 篇 管理科学与工程(可...
    • 14 篇 工商管理
    • 5 篇 图书情报与档案管...
  • 5 篇 经济学
    • 4 篇 应用经济学
  • 3 篇 法学
    • 3 篇 社会学
  • 2 篇 医学
  • 1 篇 教育学

主题

  • 312 篇 reinforcement le...
  • 216 篇 dynamic programm...
  • 206 篇 optimal control
  • 107 篇 adaptive dynamic...
  • 104 篇 adaptive dynamic...
  • 97 篇 learning
  • 88 篇 neural networks
  • 78 篇 heuristic algori...
  • 68 篇 reinforcement le...
  • 58 篇 learning (artifi...
  • 54 篇 nonlinear system...
  • 53 篇 convergence
  • 51 篇 control systems
  • 51 篇 mathematical mod...
  • 48 篇 approximate dyna...
  • 44 篇 approximation al...
  • 43 篇 equations
  • 42 篇 adaptive control
  • 41 篇 artificial neura...
  • 41 篇 cost function

机构

  • 41 篇 chinese acad sci...
  • 27 篇 univ rhode isl d...
  • 17 篇 tianjin univ sch...
  • 16 篇 univ sci & techn...
  • 16 篇 univ illinois de...
  • 15 篇 northeastern uni...
  • 14 篇 beijing normal u...
  • 13 篇 northeastern uni...
  • 13 篇 guangdong univ t...
  • 12 篇 northeastern uni...
  • 9 篇 natl univ def te...
  • 8 篇 ieee
  • 8 篇 univ chinese aca...
  • 7 篇 univ chinese aca...
  • 7 篇 cent south univ ...
  • 7 篇 southern univ sc...
  • 7 篇 beijing univ tec...
  • 6 篇 chinese acad sci...
  • 6 篇 missouri univ sc...
  • 5 篇 nanjing univ pos...

作者

  • 54 篇 liu derong
  • 37 篇 wei qinglai
  • 29 篇 he haibo
  • 22 篇 wang ding
  • 21 篇 xu xin
  • 19 篇 jiang zhong-ping
  • 17 篇 lewis frank l.
  • 17 篇 yang xiong
  • 17 篇 zhang huaguang
  • 17 篇 ni zhen
  • 16 篇 zhao bo
  • 15 篇 gao weinan
  • 14 篇 zhao dongbin
  • 13 篇 zhong xiangnan
  • 12 篇 si jennie
  • 12 篇 derong liu
  • 10 篇 jagannathan s.
  • 10 篇 dongbin zhao
  • 10 篇 song ruizhuo
  • 9 篇 abouheaf mohamme...

语言

  • 994 篇 英文
  • 20 篇 其他
  • 6 篇 中文
检索条件"任意字段=IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning"
1020 条 记 录,以下是701-710 订阅
排序:
Higher-level application of adaptive dynamic programming/reinforcement learning - A next phase for controls and system identification?
Higher-level application of Adaptive Dynamic Programming/Rei...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning
作者: Lendaris, George G. Systems Science Graduate Program Portland State University Portland OR United States
In previous work it was shown that adaptive-Critic-type Approximate dynamic programming could be applied in a higher-level way to create autonomous agents capable of using experience to discern context and select opti... 详细信息
来源: 评论
adaptive dynamic programming with balanced weights seeking strategy
Adaptive dynamic programming with balanced weights seeking s...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning
作者: Fu, Jian He, Haibo Ni, Zhen School of Automation Wuhan University of Technology Wuhan Hubei 430070 China Department of Electrical Computerand Biomedical Engineering University of Rhode Island Kingston RI 02881 United States
In this paper we propose to integrate the recursive Levenberg-Marquardt method into the adaptive dynamic programming (ADP) design for improved learning and adaptive control performance. Our key motivation is to consid... 详细信息
来源: 评论
Supervised adaptive dynamic programming based adaptive cruise control
Supervised adaptive dynamic programming based adaptive cruis...
收藏 引用
symposium Series on Computational Intelligence, ieee SSCI2011 - 2011 ieee symposium on adaptive dynamic programming and reinforcement learning, ADPRL 2011
作者: Zhao, Dongbin Hu, Zhaohui Key Laboratory of Complex Systems and Intelligence Science Institute of Automation Chinese Academy of Sciences Beijing 100190 China
This paper proposes a supervised adaptive dynamic programming (SADP) algorithm for the full range adaptive cruise control (ACC) system. The full range ACC system considers both the ACC situation in highway system and ... 详细信息
来源: 评论
An approximate dynamic programming based controller for an underactuated 6DoF quadrotor
An approximate Dynamic Programming based controller for an u...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning
作者: Stingu, Emanuel Lewis, Frank L. Automation and Robotics Research Institute University of Texas at Arlington Arlington TX United States
This paper discusses how the principles of adaptive dynamic programming (ADP) can be applied to the control of a quadrotor helicopter platform flying in an uncontrolled environment and subjected to various disturbance... 详细信息
来源: 评论
adaptive dynamic programming for optimal control of unknown nonlinear discrete-time systems
Adaptive dynamic programming for optimal control of unknown ...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning
作者: Liu, Derong Wang, Ding Zhao, Dongbin Key Laboratory of Complex Systems and Intelligence Science Institute of Automation Chinese Academy of Sciences Beijing 100190 China
An intelligent optimal control scheme for unknown nonlinear discrete-time systems with discount factor in the cost function is proposed in this paper. An iterative adaptive dynamic programming (ADP) algorithm via glob... 详细信息
来源: 评论
Enhancing the episodic natural actor-critic algorithm by a regularisation term to stabilize learning of control structures
Enhancing the episodic natural actor-critic algorithm by a r...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning
作者: Witsch, Andreas Reichle, Roland Geihs, Kurt Lange, Sascha Riedmiller, Martin Distributed Systems Group Universität Kassel Germany Machine Learning Lab Albert-Ludwigs-Universität Freiburg Germany
Incomplete or imprecise models of control systems make it difficult to find an appropriate structure and parameter set for a corresponding control policy. These problems are addressed by reinforcement learning algorit... 详细信息
来源: 评论
A reinforcement learning approach for sequential mastery testing
A reinforcement learning approach for sequential mastery tes...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning
作者: El-Alfy, El-Sayed M. College of Computer Sciences and Engineering King Fahd University of Petroleum and Minerals Dhahran 31261 Saudi Arabia
This paper explores a novel application for reinforcement learning (RL) techniques to sequential mastery testing. In such systems, the goal is to classify each examined person, using the minimal number of test items, ... 详细信息
来源: 评论
adaptive sample collection using active learning for kernel-based approximate policy iteration
Adaptive sample collection using active learning for kernel-...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning
作者: Liu, Chunming Xu, Xin Haiyun Hu Dai, Bin College of Mechatronics and Automation National University of Defense Technology Changsha 410073 China
Approximate policy iteration (API) has been shown to be a class of reinforcement learning methods with stability and sample efficiency. However, sample collection is still an open problem which is critical to the perf... 详细信息
来源: 评论
Bayesian active learning with basis functions
Bayesian active learning with basis functions
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning
作者: Ryzhov, Ilya O. Powell, Warren B. Operations Research and Financial Engineering Princeton University Princeton NJ 08544 United States
A common technique for dealing with the curse of dimensionality in approximate dynamic programming is to use a parametric value function approximation, where the value of being in a state is assumed to be a linear com... 详细信息
来源: 评论
Feedback controller parameterizations for reinforcement learning
Feedback controller parameterizations for Reinforcement Lear...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning
作者: Roberts, John W. Manchester, Ian R. Tedrake, Russ CSAIL MIT Cambridge MA 02139 United States
reinforcement learning offers a very general framework for learning controllers, but its effectiveness is closely tied to the controller parameterization used. Especially when learning feedback controllers for weakly ... 详细信息
来源: 评论