咨询与建议

限定检索结果

文献类型

  • 751 篇 会议
  • 272 篇 期刊文献
  • 4 册 图书

馆藏范围

  • 1,027 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 719 篇 工学
    • 523 篇 计算机科学与技术...
    • 385 篇 电气工程
    • 284 篇 控制科学与工程
    • 153 篇 软件工程
    • 83 篇 信息与通信工程
    • 41 篇 交通运输工程
    • 24 篇 仪器科学与技术
    • 21 篇 机械工程
    • 9 篇 电子科学与技术(可...
    • 9 篇 生物工程
    • 7 篇 力学(可授工学、理...
    • 7 篇 土木工程
    • 7 篇 石油与天然气工程
    • 6 篇 动力工程及工程热...
    • 4 篇 材料科学与工程(可...
    • 4 篇 生物医学工程(可授...
    • 4 篇 安全科学与工程
    • 3 篇 化学工程与技术
    • 3 篇 航空宇航科学与技...
  • 120 篇 理学
    • 98 篇 数学
    • 31 篇 系统科学
    • 22 篇 统计学(可授理学、...
    • 10 篇 生物学
    • 9 篇 物理学
    • 5 篇 化学
  • 68 篇 管理学
    • 65 篇 管理科学与工程(可...
    • 14 篇 工商管理
    • 7 篇 图书情报与档案管...
  • 5 篇 经济学
    • 4 篇 应用经济学
  • 3 篇 法学
    • 3 篇 社会学
  • 2 篇 医学
  • 1 篇 教育学

主题

  • 315 篇 reinforcement le...
  • 216 篇 dynamic programm...
  • 206 篇 optimal control
  • 110 篇 adaptive dynamic...
  • 105 篇 adaptive dynamic...
  • 97 篇 learning
  • 88 篇 neural networks
  • 79 篇 heuristic algori...
  • 67 篇 reinforcement le...
  • 58 篇 learning (artifi...
  • 54 篇 nonlinear system...
  • 52 篇 convergence
  • 52 篇 control systems
  • 51 篇 mathematical mod...
  • 48 篇 approximate dyna...
  • 44 篇 approximation al...
  • 43 篇 equations
  • 42 篇 adaptive control
  • 41 篇 cost function
  • 40 篇 artificial neura...

机构

  • 41 篇 chinese acad sci...
  • 27 篇 univ rhode isl d...
  • 17 篇 tianjin univ sch...
  • 16 篇 northeastern uni...
  • 16 篇 univ sci & techn...
  • 16 篇 univ illinois de...
  • 14 篇 beijing normal u...
  • 13 篇 northeastern uni...
  • 13 篇 guangdong univ t...
  • 12 篇 northeastern uni...
  • 9 篇 natl univ def te...
  • 8 篇 ieee
  • 8 篇 univ chinese aca...
  • 7 篇 univ chinese aca...
  • 7 篇 cent south univ ...
  • 7 篇 southern univ sc...
  • 7 篇 beijing univ tec...
  • 6 篇 chinese acad sci...
  • 6 篇 missouri univ sc...
  • 5 篇 nanjing univ pos...

作者

  • 55 篇 liu derong
  • 37 篇 wei qinglai
  • 29 篇 he haibo
  • 22 篇 wang ding
  • 21 篇 xu xin
  • 19 篇 jiang zhong-ping
  • 17 篇 lewis frank l.
  • 17 篇 yang xiong
  • 17 篇 zhang huaguang
  • 17 篇 ni zhen
  • 16 篇 zhao bo
  • 16 篇 gao weinan
  • 14 篇 zhao dongbin
  • 13 篇 zhong xiangnan
  • 12 篇 si jennie
  • 12 篇 derong liu
  • 11 篇 song ruizhuo
  • 10 篇 jagannathan s.
  • 10 篇 dongbin zhao
  • 9 篇 abouheaf mohamme...

语言

  • 970 篇 英文
  • 51 篇 其他
  • 6 篇 中文
检索条件"任意字段=IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning"
1027 条 记 录,以下是751-760 订阅
排序:
High-order local dynamic programming
High-order local dynamic programming
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning, (ADPRL)
作者: Yuval Tassa Emanuel Todorov Interdisciplinary Center of Neural Computation Hebrew University Jerusalem Israel Applied Mathematics and Computer Science & Engineering University of Washington Seattle USA
We describe a new local dynamic programming algorithm for solving stochastic continuous Optimal Control problems. We use cubature integration to both propagate the state distribution and perform the Bellman backup. Th... 详细信息
来源: 评论
Model-free H Stochastic Optimal Design for Unknown Linear Networked Control System Zero-sum Games via Q-learning
Model-free <i>H</i><sub>∞</sub> Stochastic Optimal Design f...
收藏 引用
ieee International symposium on Intelligent Control (ISIC)/ieee Multi-Conference on Systems and Control (MSC)
作者: Xu, Hao Jagannathan, S. Missouri Univ Sci & Technol Dept Elect & Comp Engn Rolla MO USA
In this paper, stochastic optimal strategy for unknown linear networked control system (NCS) quadratic zero-sum games related to H-infinity optimal control in the presence of random delays and packet losses is solved ... 详细信息
来源: 评论
A reinforcement learning approach for sequential mastery testing
A reinforcement learning approach for sequential mastery tes...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning, (ADPRL)
作者: El-Sayed M. El-Alfy College of Computer Sciences and Engineering King Fahd University of Petroleum and Minerals Dhahran Saudi Arabia
This paper explores a novel application for reinforcement learning (RL) techniques to sequential mastery testing. In such systems, the goal is to classify each examined person, using the minimal number of test items, ... 详细信息
来源: 评论
Higher-level application of adaptive dynamic programming/reinforcement learning - a next phase for controls and system identification?
Higher-level application of Adaptive Dynamic Programming/Rei...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning, (ADPRL)
作者: George G. Lendaris Systems Science Graduate Program Portland State University Portland OR USA
In previous work it was shown that adaptive-Critic-type Approximate dynamic programming could be applied in a “higher-level” way to create autonomous agents capable of using experience to discern context and select ... 详细信息
来源: 评论
An approximate dynamic programming based controller for an underactuated 6DoF quadrotor
An approximate Dynamic Programming based controller for an u...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning, (ADPRL)
作者: Emanuel Stingu Frank L. Lewis Automation & Robotics Research Institute University of Texas Arlington Arlington TX USA
This paper discusses how the principles of adaptive dynamic programming (ADP) can be applied to the control of a quadrotor helicopter platform flying in an uncontrolled environment and subjected to various disturbance... 详细信息
来源: 评论
Grounding subgoals in information transitions
Grounding subgoals in information transitions
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning, (ADPRL)
作者: Sander G. van Dijk Daniel Polani Adaptive Systems Research Group University of Herfordshire Hatfield UK
In reinforcement learning problems, the construction of subgoals has been identified as an important step to speed up learning and to enable skill transfer. For this purpose, one typically extracts states from various... 详细信息
来源: 评论
adaptive sample collection using active learning for kernel-based approximate policy iteration
Adaptive sample collection using active learning for kernel-...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning, (ADPRL)
作者: Chunming Liu Xin Xu Haiyun Hu Bin Dai College of Mechatronics and Automation National University of Defense Technology Changsha China
Approximate policy iteration (API) has been shown to be a class of reinforcement learning methods with stability and sample efficiency. However, sample collection is still an open problem which is critical to the perf... 详细信息
来源: 评论
N-step optimal time-invariant trajectory tracking control for a class of nonlinear systems
N-step optimal time-invariant trajectory tracking control fo...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning, (ADPRL)
作者: Ruizhuo Song Huaguang Zhang School of Information Science and Engineering Northeastern University Shenyang China
In this paper, the time-invariant trajectory tracking control problem under N-step control is solved by finite horizon approximate dynamic programming (ADP) algorithms. At first, we convert the tracking control proble... 详细信息
来源: 评论
Protecting against evaluation overfitting in empirical reinforcement learning
Protecting against evaluation overfitting in empirical reinf...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning, (ADPRL)
作者: Shimon Whiteson Brian Tanner Matthew E. Taylor Peter Stone Informatics Institute University of Amsterdam Netherlands Department of Computing Science University of Alberta Canada Department of Computer Science Lafayette College USA Department of Computer Science University of Texas Austin USA
Empirical evaluations play an important role in machine learning. However, the usefulness of any evaluation depends on the empirical methodology employed. Designing good empirical methodologies is difficult in part be... 详细信息
来源: 评论
Approximate reinforcement learning: An overview
Approximate reinforcement learning: An overview
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning, (ADPRL)
作者: Lucian Buşoniu Damien Ernst Bart De Schutter Robert Babuška Delft Center of Systems & Control Delft University of Technnology Netherlands FRS-FNRS Systems and Modeling Unit University of Liège Belgium
reinforcement learning (RL) allows agents to learn how to optimally interact with complex environments. Fueled by recent advances in approximation-based algorithms, RL has obtained impressive successes in robotics, ar... 详细信息
来源: 评论