咨询与建议

限定检索结果

文献类型

  • 746 篇 会议
  • 270 篇 期刊文献
  • 4 册 图书

馆藏范围

  • 1,020 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 711 篇 工学
    • 520 篇 计算机科学与技术...
    • 380 篇 电气工程
    • 278 篇 控制科学与工程
    • 153 篇 软件工程
    • 79 篇 信息与通信工程
    • 40 篇 交通运输工程
    • 23 篇 仪器科学与技术
    • 20 篇 机械工程
    • 9 篇 生物工程
    • 8 篇 电子科学与技术(可...
    • 7 篇 力学(可授工学、理...
    • 7 篇 土木工程
    • 6 篇 动力工程及工程热...
    • 6 篇 石油与天然气工程
    • 4 篇 生物医学工程(可授...
    • 3 篇 材料科学与工程(可...
    • 3 篇 化学工程与技术
    • 3 篇 航空宇航科学与技...
    • 3 篇 安全科学与工程
  • 118 篇 理学
    • 98 篇 数学
    • 32 篇 系统科学
    • 22 篇 统计学(可授理学、...
    • 10 篇 生物学
    • 8 篇 物理学
    • 4 篇 化学
  • 66 篇 管理学
    • 63 篇 管理科学与工程(可...
    • 14 篇 工商管理
    • 5 篇 图书情报与档案管...
  • 5 篇 经济学
    • 4 篇 应用经济学
  • 3 篇 法学
    • 3 篇 社会学
  • 2 篇 医学
  • 1 篇 教育学

主题

  • 312 篇 reinforcement le...
  • 216 篇 dynamic programm...
  • 206 篇 optimal control
  • 107 篇 adaptive dynamic...
  • 104 篇 adaptive dynamic...
  • 97 篇 learning
  • 88 篇 neural networks
  • 78 篇 heuristic algori...
  • 68 篇 reinforcement le...
  • 58 篇 learning (artifi...
  • 54 篇 nonlinear system...
  • 53 篇 convergence
  • 51 篇 control systems
  • 51 篇 mathematical mod...
  • 48 篇 approximate dyna...
  • 44 篇 approximation al...
  • 43 篇 equations
  • 42 篇 adaptive control
  • 41 篇 artificial neura...
  • 41 篇 cost function

机构

  • 41 篇 chinese acad sci...
  • 27 篇 univ rhode isl d...
  • 17 篇 tianjin univ sch...
  • 16 篇 univ sci & techn...
  • 16 篇 univ illinois de...
  • 15 篇 northeastern uni...
  • 14 篇 beijing normal u...
  • 13 篇 northeastern uni...
  • 13 篇 guangdong univ t...
  • 12 篇 northeastern uni...
  • 9 篇 natl univ def te...
  • 8 篇 ieee
  • 8 篇 univ chinese aca...
  • 7 篇 univ chinese aca...
  • 7 篇 cent south univ ...
  • 7 篇 southern univ sc...
  • 7 篇 beijing univ tec...
  • 6 篇 chinese acad sci...
  • 6 篇 missouri univ sc...
  • 5 篇 nanjing univ pos...

作者

  • 54 篇 liu derong
  • 37 篇 wei qinglai
  • 29 篇 he haibo
  • 22 篇 wang ding
  • 21 篇 xu xin
  • 19 篇 jiang zhong-ping
  • 17 篇 lewis frank l.
  • 17 篇 yang xiong
  • 17 篇 zhang huaguang
  • 17 篇 ni zhen
  • 16 篇 zhao bo
  • 15 篇 gao weinan
  • 14 篇 zhao dongbin
  • 13 篇 zhong xiangnan
  • 12 篇 si jennie
  • 12 篇 derong liu
  • 10 篇 jagannathan s.
  • 10 篇 dongbin zhao
  • 10 篇 song ruizhuo
  • 9 篇 abouheaf mohamme...

语言

  • 994 篇 英文
  • 20 篇 其他
  • 6 篇 中文
检索条件"任意字段=IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning"
1020 条 记 录,以下是761-770 订阅
排序:
Safe reinforcement learning in high-risk tasks through policy improvement
Safe reinforcement learning in high-risk tasks through polic...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning, (ADPRL)
作者: Francisco Javier Garcia Polo Fernando Fernandez Rebollo Computer Science Department Universidad Carlos III de Madrid Madrid Spain
reinforcement learning (RL) methods are widely used for dynamic control tasks. In many cases, these are high risk tasks where the trial and error process may select actions which execution from unsafe states can be ca... 详细信息
来源: 评论
Application of reinforcement learning-based algorithms in CO2 allowance and electricity markets
Application of reinforcement learning-based algorithms in CO...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning, (ADPRL)
作者: Vishnuteja Nanduri Department of Industrial & Manufacturing Engineering University of Wisconsin Milwaukee Milwaukee WI USA
Climate change is one of the most important challenges faced by the world this century. In the U.S., the electric power industry is the largest emitter of CO 2 , contributing to the climate crisis. Federal emissions c... 详细信息
来源: 评论
Improved neural fitted Q iteration applied to a novel computer gaming and learning benchmark
Improved neural fitted Q iteration applied to a novel comput...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning, (ADPRL)
作者: Thomas Gabel Christian Lutz Martin Riedmiller Machine Learning Laboratory Department of Computer Science University of Freiburg Freiburg im Breisgau Germany
Neural batch reinforcement learning (RL) algorithms have recently shown to be a powerful tool for model-free reinforcement learning problems. In this paper, we present a novel learning benchmark from the realm of comp... 详细信息
来源: 评论
Enhancing the episodic natural actor-critic algorithm by a regularisation term to stabilize learning of control structures
Enhancing the episodic natural actor-critic algorithm by a r...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning, (ADPRL)
作者: Andreas Witsch Roland Reichle Kurt Geihs Sascha Lange Martin Riedmiller Distributed Systems Group Universität Kassel Germany Machine Learning Laboratory Albert Ludwigs Universität Freiburg Germany
Incomplete or imprecise models of control systems make it difficult to find an appropriate structure and parameter set for a corresponding control policy. These problems are addressed by reinforcement learning algorit... 详细信息
来源: 评论
Agent self-assessment: Determining policy quality without execution
Agent self-assessment: Determining policy quality without ex...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning, (ADPRL)
作者: Alexander Hans Siegmund Duell Steffen Udluft Neuroinformatics and Cognitive Robotics Laboratory Ilmenau University of Technology Ilmenau Germany Machine Learning Group Berlin Institute of Technology Berlin Germany Intelligent Systems and Control Siemens AG Munich Germany
With the development of data-efficient reinforcement learning (RL) methods, a promising data-driven solution for optimal control of complex technical systems has become available. For the application of RL to a techni... 详细信息
来源: 评论
Active learning for personalizing treatment
Active learning for personalizing treatment
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning, (ADPRL)
作者: Kun Deng Joelle Pineau Susan Murphy Department of Statistics University of Michigan USA Department of Computer Science McGill University Canada
The personalization of treatment via genetic biomarkers and other risk categories has drawn increasing interest among clinical researchers and scientists. A major challenge here is to construct individualized treatmen... 详细信息
来源: 评论
reinforcement learning in multidimensional continuous action spaces
Reinforcement learning in multidimensional continuous action...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning, (ADPRL)
作者: Jason Pazis Michail G. Lagoudakis Department of Computer Science Duke University Durham NC USA Department of Electronic and Computer Engineering Technical University of Crete Crete Greece
The majority of learning algorithms available today focus on approximating the state (V ) or state-action (Q) value function and efficient action selection comes as an afterthought. On the other hand, real-world probl... 详细信息
来源: 评论
ieee SSCI 2011 - symposium Series on Computational Intelligence - ieee ALIFE 2011: 2011 ieee symposium on Artificial Life
IEEE SSCI 2011 - Symposium Series on Computational Intellige...
收藏 引用
symposium Series on Computational Intelligence, ieee SSCI 2011 - 2011 ieee symposium on Artificial Life, ieee ALIFE 2011
The proceedings contain 30 papers. The topics discussed include: computation of population spatial distribution in individual-based ecosystem simulation;towards imitation-enhanced reinforcement learning in multi-agent...
来源: 评论
Active exploration for robot parameter selection in episodic reinforcement learning
Active exploration for robot parameter selection in episodic...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning, (ADPRL)
作者: Oliver Kroemer Jan Peters Max-Planck Institute Tubingen Germany
As the complexity of robots and other autonomous systems increases, it becomes more important that these systems can adapt and optimize their settings actively. However, such optimization is rarely trivial. Sampling f... 详细信息
来源: 评论
Directed exploration of policy space using support vector classifiers
Directed exploration of policy space using support vector cl...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning, (ADPRL)
作者: Ioannis Rexakis Michail G. Lagoudakis Department of Electronic and Computer Engineering Technical University of Crete Crete Greece
Good policies in reinforcement learning problems typically exhibit significant structure. Several recent learning approaches based on the approximate policy iteration scheme suggest the use of classifiers for capturin... 详细信息
来源: 评论