咨询与建议

限定检索结果

文献类型

  • 748 篇 会议
  • 271 篇 期刊文献
  • 4 册 图书

馆藏范围

  • 1,023 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 712 篇 工学
    • 520 篇 计算机科学与技术...
    • 381 篇 电气工程
    • 278 篇 控制科学与工程
    • 153 篇 软件工程
    • 79 篇 信息与通信工程
    • 40 篇 交通运输工程
    • 23 篇 仪器科学与技术
    • 20 篇 机械工程
    • 9 篇 生物工程
    • 8 篇 电子科学与技术(可...
    • 7 篇 力学(可授工学、理...
    • 7 篇 土木工程
    • 6 篇 动力工程及工程热...
    • 6 篇 石油与天然气工程
    • 4 篇 生物医学工程(可授...
    • 3 篇 材料科学与工程(可...
    • 3 篇 化学工程与技术
    • 3 篇 航空宇航科学与技...
    • 3 篇 安全科学与工程
  • 118 篇 理学
    • 98 篇 数学
    • 32 篇 系统科学
    • 22 篇 统计学(可授理学、...
    • 10 篇 生物学
    • 8 篇 物理学
    • 4 篇 化学
  • 66 篇 管理学
    • 63 篇 管理科学与工程(可...
    • 14 篇 工商管理
    • 5 篇 图书情报与档案管...
  • 5 篇 经济学
    • 4 篇 应用经济学
  • 3 篇 法学
    • 3 篇 社会学
  • 2 篇 医学
  • 1 篇 教育学

主题

  • 313 篇 reinforcement le...
  • 216 篇 dynamic programm...
  • 206 篇 optimal control
  • 107 篇 adaptive dynamic...
  • 104 篇 adaptive dynamic...
  • 97 篇 learning
  • 88 篇 neural networks
  • 78 篇 heuristic algori...
  • 68 篇 reinforcement le...
  • 58 篇 learning (artifi...
  • 54 篇 nonlinear system...
  • 53 篇 convergence
  • 51 篇 control systems
  • 51 篇 mathematical mod...
  • 48 篇 approximate dyna...
  • 44 篇 approximation al...
  • 43 篇 equations
  • 42 篇 adaptive control
  • 41 篇 artificial neura...
  • 41 篇 cost function

机构

  • 41 篇 chinese acad sci...
  • 27 篇 univ rhode isl d...
  • 17 篇 tianjin univ sch...
  • 16 篇 univ sci & techn...
  • 16 篇 univ illinois de...
  • 15 篇 northeastern uni...
  • 14 篇 beijing normal u...
  • 13 篇 northeastern uni...
  • 13 篇 guangdong univ t...
  • 12 篇 northeastern uni...
  • 9 篇 natl univ def te...
  • 8 篇 ieee
  • 8 篇 univ chinese aca...
  • 7 篇 univ chinese aca...
  • 7 篇 cent south univ ...
  • 7 篇 southern univ sc...
  • 7 篇 beijing univ tec...
  • 6 篇 chinese acad sci...
  • 6 篇 missouri univ sc...
  • 5 篇 nanjing univ pos...

作者

  • 54 篇 liu derong
  • 37 篇 wei qinglai
  • 29 篇 he haibo
  • 22 篇 wang ding
  • 21 篇 xu xin
  • 19 篇 jiang zhong-ping
  • 17 篇 lewis frank l.
  • 17 篇 yang xiong
  • 17 篇 zhang huaguang
  • 17 篇 ni zhen
  • 16 篇 zhao bo
  • 15 篇 gao weinan
  • 14 篇 zhao dongbin
  • 13 篇 derong liu
  • 13 篇 zhong xiangnan
  • 12 篇 si jennie
  • 10 篇 jagannathan s.
  • 10 篇 dongbin zhao
  • 10 篇 song ruizhuo
  • 9 篇 abouheaf mohamme...

语言

  • 992 篇 英文
  • 25 篇 其他
  • 6 篇 中文
检索条件"任意字段=IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning"
1023 条 记 录,以下是781-790 订阅
排序:
Integral reinforcement learning for Online Computation of Feedback Nash Strategies of Nonzero-Sum Differential Games  49
Integral Reinforcement Learning for Online Computation of Fe...
收藏 引用
49th ieee Conference on Decision and Control (CDC)
作者: Vrabie, Draguna Lewis, Frank Univ Texas Arlington Automat & Robot Res Inst Ft Worth TX 76118 USA
This paper presents an Approximate/adaptive dynamic programming (ADP) algorithm that finds online the Nash equilibrium for two-player nonzero-sum differential games with linear dynamics and infinite horizon quadratic ... 详细信息
来源: 评论
Supervised reinforcement learning for human-like adaptive cruise control
收藏 引用
4th International symposium on Computational Intelligence and Industrial Applications, ISCIIA 2010
作者: Hu, Zhaohui Zhao, Dongbin
This paper proposes a supervised reinforcement learning (SRL) algorithm for the adaptive Cruise Control system (ACC) with human-like driving habit needs, which can be thought of as a dynamic programming problem with s... 详细信息
来源: 评论
Evaluating supervised machine learning for adapting enterprise DRE systems
Evaluating supervised machine learning for adapting enterpri...
收藏 引用
International symposium on Intelligence Information Processing and Trusted Computing
作者: Hoffert, Joe Schmidt, Douglas Vanderbilt University EECS Department Nashville TN United States
Several adaptation approaches, such as policy-based and reinforcement learning, have been devised to ensure end-to-end quality-of-service (QoS) for enterprise distributed systems in dynamic operating environments. Not... 详细信息
来源: 评论
Tutor learning using linear constraints in approximate dynamic programming
Tutor learning using linear constraints in approximate dynam...
收藏 引用
48th Annual Allerton Conference on Communication, Control, and Computing, Allerton 2010
作者: Di Castro, Dotan Mannor, Shie Faculty of Electrical Engineering Technion - Israel Institute of Technology 32000 Haifa Israel
In adaptive control, agents interacting with Markov Decision Processes typically face two types of setups. In the first setup, the environment's model is known and dynamic programming and related methods are used ... 详细信息
来源: 评论
dynamic routing optimization based on real time adaptive delay estimation for wireless networks
Dynamic routing optimization based on real time adaptive del...
收藏 引用
15th ieee symposium on Computers and Communications, ISCC 2010
作者: Ziane, Saïda Mellouk, Abdelhamid JUT CreteillVitry 120-122 Rue Paul Armangot 94400 Vitry sur Seine France
With the wide emergence of real time applications in mobile ad hoc networks, delay guarantees become increasingly required. Many routing protocols are proposed, in the few last years, for improving the overall delay i... 详细信息
来源: 评论
A comparative study of urban traffic signal control with reinforcement learning and adaptive dynamic programming
A comparative study of urban traffic signal control with rei...
收藏 引用
2010 6th ieee World Congress on Computational Intelligence, WCCI 2010 - 2010 International Joint Conference on Neural Networks, IJCNN 2010
作者: Dai, Yujie Zhao, Dongbin Yi, Jianqiang Laboratory of Complex Systems and Intelligence Science Institute of Automation Chinese Academy of Sciences No.95 Zhongguancun East Road Haidian District Beijing 100190 China
This paper proposes a new algorithm that employs adaptive dynamic programming(ADP) to solve the distributed control problem of urban traffic with an infinite horizon. Urban traffic congestions lead to a lot of time co... 详细信息
来源: 评论
A hierarchical learning architecture with multiple-goal representations based on adaptive dynamic programming
A hierarchical learning architecture with multiple-goal repr...
收藏 引用
ieee International Conference on Networking, Sensing and Control
作者: Haibo He Bo Liu Department of Electrical Computer and Biomedical Engineering University of Rhode Island Kingston RI USA Department of Electrical and Computer Engineering Stevens Institute of Technology Hoboken NJ USA
In this paper we propose a hierarchical learning architecture with multiple-goal representations based on adaptive dynamic programming (ADP). The key idea of this architecture is to integrate a reference network to pr... 详细信息
来源: 评论
Integral reinforcement learning for Online Computation of Feedback Nash Strategies of Nonzero-Sum Differential Games
Integral Reinforcement Learning for Online Computation of Fe...
收藏 引用
2010 49th ieee Conference on Decision and Control
作者: Draguna Vrabie Frank Lewis Automation and Robotics Research Institute University of Texas at Arlington 7300 Jack Newell Blvd. S. Fort Worth TX 76118 USA
This paper presents an Approximate/adaptive dynamic programming (ADP) algorithm that finds online the Nash equilibrium for two-player nonzero-sum differential games with linear dynamics and infinite horizon quadratic ... 详细信息
来源: 评论
reinforcement learning and adaptive dynamic programming for Feedback Control
收藏 引用
ieee CIRCUITS AND SYSTEMS MAGAZINE 2009年 第3期9卷 32-50页
作者: Lewis, Frank L. Vrabie, Draguna Univ Texas Arlington Automat & Robot Res Inst Arlington TX USA S China Univ Technol Guangzhou Guangdong Peoples R China Shanghai Jiao Tong Univ Shanghai Peoples R China
Living organisms learn by acting on their environment, observing the resulting reward stimulus, and adjusting their actions accordingly to improve the reward. This action-based or reinforcement learning can capture no... 详细信息
来源: 评论
Feature Discovery in Approximate dynamic programming
Feature Discovery in Approximate Dynamic Programming
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning
作者: Preux, Philippe Girgin, Sertan Loth, Manuel Univ Lille Lab Informat Fondamentale Lille Comp Sci Lab CNRS Lille France INRIA Paris France
Feature discovery aims at finding the best representation of data. This is a very important topic in machine learning, and in reinforcement learning in particular. Based on our recent work on feature discovery in the ... 详细信息
来源: 评论