咨询与建议

限定检索结果

文献类型

  • 748 篇 会议
  • 271 篇 期刊文献
  • 4 册 图书

馆藏范围

  • 1,023 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 712 篇 工学
    • 520 篇 计算机科学与技术...
    • 381 篇 电气工程
    • 278 篇 控制科学与工程
    • 153 篇 软件工程
    • 79 篇 信息与通信工程
    • 40 篇 交通运输工程
    • 23 篇 仪器科学与技术
    • 20 篇 机械工程
    • 9 篇 生物工程
    • 8 篇 电子科学与技术(可...
    • 7 篇 力学(可授工学、理...
    • 7 篇 土木工程
    • 6 篇 动力工程及工程热...
    • 6 篇 石油与天然气工程
    • 4 篇 生物医学工程(可授...
    • 3 篇 材料科学与工程(可...
    • 3 篇 化学工程与技术
    • 3 篇 航空宇航科学与技...
    • 3 篇 安全科学与工程
  • 118 篇 理学
    • 98 篇 数学
    • 32 篇 系统科学
    • 22 篇 统计学(可授理学、...
    • 10 篇 生物学
    • 8 篇 物理学
    • 4 篇 化学
  • 66 篇 管理学
    • 63 篇 管理科学与工程(可...
    • 14 篇 工商管理
    • 5 篇 图书情报与档案管...
  • 5 篇 经济学
    • 4 篇 应用经济学
  • 3 篇 法学
    • 3 篇 社会学
  • 2 篇 医学
  • 1 篇 教育学

主题

  • 313 篇 reinforcement le...
  • 216 篇 dynamic programm...
  • 206 篇 optimal control
  • 107 篇 adaptive dynamic...
  • 104 篇 adaptive dynamic...
  • 97 篇 learning
  • 88 篇 neural networks
  • 78 篇 heuristic algori...
  • 68 篇 reinforcement le...
  • 58 篇 learning (artifi...
  • 54 篇 nonlinear system...
  • 53 篇 convergence
  • 51 篇 control systems
  • 51 篇 mathematical mod...
  • 48 篇 approximate dyna...
  • 44 篇 approximation al...
  • 43 篇 equations
  • 42 篇 adaptive control
  • 41 篇 artificial neura...
  • 41 篇 cost function

机构

  • 41 篇 chinese acad sci...
  • 27 篇 univ rhode isl d...
  • 17 篇 tianjin univ sch...
  • 16 篇 univ sci & techn...
  • 16 篇 univ illinois de...
  • 15 篇 northeastern uni...
  • 14 篇 beijing normal u...
  • 13 篇 northeastern uni...
  • 13 篇 guangdong univ t...
  • 12 篇 northeastern uni...
  • 9 篇 natl univ def te...
  • 8 篇 ieee
  • 8 篇 univ chinese aca...
  • 7 篇 univ chinese aca...
  • 7 篇 cent south univ ...
  • 7 篇 southern univ sc...
  • 7 篇 beijing univ tec...
  • 6 篇 chinese acad sci...
  • 6 篇 missouri univ sc...
  • 5 篇 nanjing univ pos...

作者

  • 54 篇 liu derong
  • 37 篇 wei qinglai
  • 29 篇 he haibo
  • 22 篇 wang ding
  • 21 篇 xu xin
  • 19 篇 jiang zhong-ping
  • 17 篇 lewis frank l.
  • 17 篇 yang xiong
  • 17 篇 zhang huaguang
  • 17 篇 ni zhen
  • 16 篇 zhao bo
  • 15 篇 gao weinan
  • 14 篇 zhao dongbin
  • 13 篇 derong liu
  • 13 篇 zhong xiangnan
  • 12 篇 si jennie
  • 10 篇 jagannathan s.
  • 10 篇 dongbin zhao
  • 10 篇 song ruizhuo
  • 9 篇 abouheaf mohamme...

语言

  • 992 篇 英文
  • 25 篇 其他
  • 6 篇 中文
检索条件"任意字段=IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning"
1023 条 记 录,以下是791-800 订阅
排序:
Integrating Sporadic Imitation in reinforcement learning Robots
Integrating Sporadic Imitation in Reinforcement Learning Rob...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning
作者: Richert, Willi Scheller, Ulrich Koch, Markus Kleinjohann, Bernd Stern, Claudius Univ Gesamthsch Paderborn Fac Comp Sci Elect Engn & Math D-33102 Paderborn Germany
Although the combination of reinforcement learning and imitation has been already considered in recent research, it always revolved around fixed settings where demonstrator and imitator are fixed and the imitation pro... 详细信息
来源: 评论
Neural-Network-Based reinforcement learning Controller for Nonlinear Systems with Non-symmetric Dead-zone Inputs
Neural-Network-Based Reinforcement Learning Controller for N...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning
作者: Zhang, Xin Zhang, Huaguang Liu, Derong Kim, Yongsu Northeastern Univ Sch Informat Sci & Engn Shenyang 110004 Liaoning Peoples R China Univ Illinois Dept Elect & Comp Engn Chicago IL 60607 USA
A novel adaptive-critic-based NN controller using reinforcement learning is developed for a class of nonlinear systems with non-symmetric dead-zone inputs. The adaptive critic NN controller uses two NNs: the critic NN... 详细信息
来源: 评论
Multiagent reinforcement learning in extensive form games with complete information
Multiagent reinforcement learning in extensive form games wi...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning
作者: Akramizadeh, Ali Menhaj, Mohammad-B. Afshar, Ahmad Polytech Univ Tehran EE Dept Ctr Computat Intelligence & Large Scale Syst Tehran Iran
Recent developments in multiagent reinforcement learning, mostly concentrate on normal form games or restrictive hierarchical form games. In this paper, we use the well known Q-learning in extensive form games which a... 详细信息
来源: 评论
Bounds of Optimal learning
Bounds of Optimal Learning
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning
作者: Belavkin, Roman V. Middlesex Univ Sch Engn & Informat Sci London N17 8HR England
learning is considered as a dynamic process described by a trajectory on a statistical manifold, and a topology is introduced defining trajectories continuous in information. The analysis generalises the application o... 详细信息
来源: 评论
Iterative Local dynamic programming
Iterative Local Dynamic Programming
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning
作者: Todorov, Emanuel Tassa, Yuval Univ Calif San Diego Dept Cognit Sci La Jolla CA 92093 USA Hebrew Univ Jerusalem Ctr Neural Computat IL-91905 Jerusalem Israel
We develop an iterative local dynamic programming method (iLDP) applicable to stochastic optimal control problems in continuous high-dimensional state and action spaces. Such problems are common in the control of biol... 详细信息
来源: 评论
The QV Family Compared to Other reinforcement learning Algorithms
The QV Family Compared to Other Reinforcement Learning Algor...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning
作者: Wiering, Marco A. van Hasselt, Hado Univ Groningen Dept Artificial Intelligence NL-9700 AB Groningen Netherlands Univ Utrecht Intelligent Syst Grp NL-3508 TC Utrecht Netherlands
This paper describes several new online model-free reinforcement learning (RL) algorithms. We designed three new reinforcement algorithms, namely: QV2, QVMAX, and QV-MAX2, that are all based on the QV-learning algorit... 详细信息
来源: 评论
Efficient Data Reuse in Value Function Approximation.
Efficient Data Reuse in Value Function Approximation.
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning
作者: Hachiya, Hirotaka Akiyama, Takayuki Sugiyama, Masashi Peters, Jan Tokyo Inst Technol Dept Comp Sci Meguro Ku 2-12-1 O Okayama Tokyo 1528552 Japan Max Planck Inst Biol Cybernet Dept Scholkopf D-72076 Tubingen Germany
Off-policy reinforcement learning is aimed at efficiently using data samples gathered from a policy that is different from the currently optimized policy. A common approach is to use importance sampling techniques for... 详细信息
来源: 评论
Using reward-weighted imitations for robot reinforcement learning
Using reward-weighted imitations for robot reinforcement lea...
收藏 引用
2009 ieee symposium on adaptive dynamic programming and reinforcement learning, ADPRL 2009
作者: Peters, Jan Kober, Jens Department of Empirical Inference and Machine Leartling Max Planck Institute for Biological Cybernetics Spemannstr. 38 72076 Tlibingen Germany
reinforcement learning is an essential ability for robots to learn new motor skills. Nevertheless, few methods scale into the domain of anthropomorphic robotics. In order to improve in terms of efficiency, the problem... 详细信息
来源: 评论
Algorithm and Stability of ATC Receding Horizon Control
Algorithm and Stability of ATC Receding Horizon Control
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning
作者: Zhang, Hongwei Huang, Jie Lewis, Frank L. Chinese Univ Hong Kong Dept Mech & Automat Engn Shatin Hong Kong Peoples R China Univ Texas Arlingto Automat & Robot Res Inst Ft Worth TX 76118 USA
Receding horizon control (RHC), also known as model predictive control (MPC), is a suboptimal control scheme that solves a finite horizon open-loop optimal control problem in an infinite horizon context and yields a m... 详细信息
来源: 评论
Neuro-controller of Cement Rotary Kiln Temperature with adaptive Critic Designs
Neuro-controller of Cement Rotary Kiln Temperature with Adap...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning
作者: Lin, Xiaofeng Liu, Tangbo Song, Shaojian Song, Chunning Guangxi Univ Coll Elect Engn Nanning 530004 Peoples R China
The production process of the cement rotary kiln is a typical engineering thermodynamics with large inertia, lagging and nonlinearity. So it is very difficult to control this process accurately using traditional contr... 详细信息
来源: 评论