咨询与建议

限定检索结果

文献类型

  • 748 篇 会议
  • 271 篇 期刊文献
  • 4 册 图书

馆藏范围

  • 1,023 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 712 篇 工学
    • 520 篇 计算机科学与技术...
    • 381 篇 电气工程
    • 278 篇 控制科学与工程
    • 153 篇 软件工程
    • 79 篇 信息与通信工程
    • 40 篇 交通运输工程
    • 23 篇 仪器科学与技术
    • 20 篇 机械工程
    • 9 篇 生物工程
    • 8 篇 电子科学与技术(可...
    • 7 篇 力学(可授工学、理...
    • 7 篇 土木工程
    • 6 篇 动力工程及工程热...
    • 6 篇 石油与天然气工程
    • 4 篇 生物医学工程(可授...
    • 3 篇 材料科学与工程(可...
    • 3 篇 化学工程与技术
    • 3 篇 航空宇航科学与技...
    • 3 篇 安全科学与工程
  • 118 篇 理学
    • 98 篇 数学
    • 32 篇 系统科学
    • 22 篇 统计学(可授理学、...
    • 10 篇 生物学
    • 8 篇 物理学
    • 4 篇 化学
  • 66 篇 管理学
    • 63 篇 管理科学与工程(可...
    • 14 篇 工商管理
    • 5 篇 图书情报与档案管...
  • 5 篇 经济学
    • 4 篇 应用经济学
  • 3 篇 法学
    • 3 篇 社会学
  • 2 篇 医学
  • 1 篇 教育学

主题

  • 313 篇 reinforcement le...
  • 216 篇 dynamic programm...
  • 206 篇 optimal control
  • 107 篇 adaptive dynamic...
  • 104 篇 adaptive dynamic...
  • 97 篇 learning
  • 88 篇 neural networks
  • 78 篇 heuristic algori...
  • 68 篇 reinforcement le...
  • 58 篇 learning (artifi...
  • 54 篇 nonlinear system...
  • 53 篇 convergence
  • 51 篇 control systems
  • 51 篇 mathematical mod...
  • 48 篇 approximate dyna...
  • 44 篇 approximation al...
  • 43 篇 equations
  • 42 篇 adaptive control
  • 41 篇 artificial neura...
  • 41 篇 cost function

机构

  • 41 篇 chinese acad sci...
  • 27 篇 univ rhode isl d...
  • 17 篇 tianjin univ sch...
  • 16 篇 univ sci & techn...
  • 16 篇 univ illinois de...
  • 15 篇 northeastern uni...
  • 14 篇 beijing normal u...
  • 13 篇 northeastern uni...
  • 13 篇 guangdong univ t...
  • 12 篇 northeastern uni...
  • 9 篇 natl univ def te...
  • 8 篇 ieee
  • 8 篇 univ chinese aca...
  • 7 篇 univ chinese aca...
  • 7 篇 cent south univ ...
  • 7 篇 southern univ sc...
  • 7 篇 beijing univ tec...
  • 6 篇 chinese acad sci...
  • 6 篇 missouri univ sc...
  • 5 篇 nanjing univ pos...

作者

  • 54 篇 liu derong
  • 37 篇 wei qinglai
  • 29 篇 he haibo
  • 22 篇 wang ding
  • 21 篇 xu xin
  • 19 篇 jiang zhong-ping
  • 17 篇 lewis frank l.
  • 17 篇 yang xiong
  • 17 篇 zhang huaguang
  • 17 篇 ni zhen
  • 16 篇 zhao bo
  • 15 篇 gao weinan
  • 14 篇 zhao dongbin
  • 13 篇 derong liu
  • 13 篇 zhong xiangnan
  • 12 篇 si jennie
  • 10 篇 jagannathan s.
  • 10 篇 dongbin zhao
  • 10 篇 song ruizhuo
  • 9 篇 abouheaf mohamme...

语言

  • 992 篇 英文
  • 25 篇 其他
  • 6 篇 中文
检索条件"任意字段=IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning"
1023 条 记 录,以下是801-810 订阅
排序:
learning continuous-action control policies
Learning continuous-action control policies
收藏 引用
2009 ieee symposium on adaptive dynamic programming and reinforcement learning, ADPRL 2009
作者: Pazis, Jason G. Lagoudakis, Michail Department of Electronic and Computer Engineering Technical University of Crete Chania Crete Greece
reinforcement learning for control in stochastic processes has received significant attention in the last few years. Several data-efficient methods, even for continuous state spaces, have been proposed, however most o... 详细信息
来源: 评论
A theoretical and empirical analysis of expected sarsa
A theoretical and empirical analysis of expected sarsa
收藏 引用
2009 ieee symposium on adaptive dynamic programming and reinforcement learning, ADPRL 2009
作者: Harm van, Seijen Hado van, Hasselt Whiteson, Shimon Wiering, Marco Integrated Systems group TNO Defense Safety and Security Hague Netherlands Intelligent Systems Group Utrecht University Utrecht Netherlands Intelligent Autonomous Systems Group University of Amsterdam Amsterdam Netherlands Department of Artificial Intelligence University of Groningen Groningen Netherlands
This paper presents a theoretical and empirical analysis of Expected Sarsa, a variation on Sarsa, the classic onpolicy temporal-difference method for model-free reinforcement learning. Expected Sarsa exploits knowledg... 详细信息
来源: 评论
ADHDP(?) Strategies based coordinated ramps metering with queuing consideration
ADHDP(?) Strategies based coordinated ramps metering with qu...
收藏 引用
2009 ieee symposium on adaptive dynamic programming and reinforcement learning, ADPRL 2009
作者: Bai, Xuerui Zhao, Dongbin Yi, Jianqiang Laboratory of Complex Systems and Intelligence Science Institute of Automation Chinese Academy of Sciences. 95 Zhongguancun East Road. Haidian District Beijing 100080 China
Ramp metering has been developed as a traffic management strategy to alleviate congestion on freeways. Most ramp metering control algorithms are concerned without queuing consideration, because it's still a tough ... 详细信息
来源: 评论
A Retrospective on adaptive dynamic programming for Control
A Retrospective on Adaptive Dynamic Programming for Control
收藏 引用
International Joint Conference on Neural Networks
作者: Lendaris, George G. Portland State Univ Syst Sci Grad Program Portland OR 97201 USA
Some three decades ago, certain computational intelligence methods of reinforcement learning were recognized as implementing an approximation of Bellman's dynamic programming method, which is known in the controls... 详细信息
来源: 评论
Pattern Driven dynamic Scheduling Approach using reinforcement learning
Pattern Driven Dynamic Scheduling Approach using Reinforceme...
收藏 引用
ieee International Conference on Automation and Logistics
作者: Wei Yingzi Jiang Xinli Hao Pingbo Gu Kanfeng Shenyang Ligong Univ Shenyang 110168 Peoples R China Chinese Acad Sci Shenyang Inst Automat Shenyang 110016 Peoples R China
Production scheduling is critical for manufacturing system. Dispatching rules are usually applied dynamically to schedule the job in the dynamic job-shop. The paper presents an adaptive iterative scheduling algorithm ... 详细信息
来源: 评论
adaptive dynamic programming for Feedback Control
Adaptive Dynamic Programming for Feedback Control
收藏 引用
7th Asian Control Conference (ASCC 2009)
作者: Lewis, Frank L. Vrabie, Draguna Univ Texas Arlington Automat & Robot Res Inst Ft Worth TX 76118 USA
Living organisms learn by acting on their environment, observing the resulting reward stimulus, and adjusting their actions accordingly to improve the reward. This action-based or reinforcement learning can capture no... 详细信息
来源: 评论
A Strategy for Converging dynamic Action Policies
A Strategy for Converging Dynamic Action Policies
收藏 引用
ieee symposium on Intelligent Agents
作者: Ribeiro, Richardson Borges, Andre P. Koerich, Alessandro L. Scalabrin, Edson E. Enembreck, Fabricio Univ Contestado UnC2 Av Nereu Ramos 1071 BR-89300000 Mafra SC Brazil Pontifical Catholic Univ Parana PUCPR Grad Program Comp Sci PPGIa B-1155 Parana Brazil
In this paper we propose a novel strategy for converging dynamic policies generated by adaptive agents, which receive and accumulate rewards for their actions. The goal of the proposed strategy is to speed up the conv... 详细信息
来源: 评论
adaptive computation of optimal nonrandomized policies in constrained average-reward MDPs
Adaptive computation of optimal nonrandomized policies in co...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning, (ADPRL)
作者: Eugene A. Feinberg Department of Applied Mathematics and Statistics Stony Brook University Stony Brook NY USA
This paper deals with computation of optimal nonrandomized nonstationary policies and mixed stationary policies for average-reward Markov decision processes with multiple criteria and constraints. We consider problems... 详细信息
来源: 评论
Feature discovery in approximate dynamic programming
Feature discovery in approximate dynamic programming
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning, (ADPRL)
作者: Philippe Preux Sertan Girgin Manuel Loth Laboratoire dInformatique Fondamentale de Lille (Computer Science Laboratory associated to the CNRS) and the INRIAINRIA Université de Lille France
Feature discovery aims at finding the best representation of data. This is a very important topic in machine learning, and in reinforcement learning in particular. Based on our recent work on feature discovery in the ... 详细信息
来源: 评论
Using reward-weighted imitation for robot reinforcement learning
Using reward-weighted imitation for robot Reinforcement Lear...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning, (ADPRL)
作者: Jan Peters Jens Kober Department of Empirical Inference and Machine Learning Max-Planck Institute of Biological Cybernetics Tubingen Germany
reinforcement learning is an essential ability for robots to learn new motor skills. Nevertheless, few methods scale into the domain of anthropomorphic robotics. In order to improve in terms of efficiency, the problem... 详细信息
来源: 评论