咨询与建议

限定检索结果

文献类型

  • 751 篇 会议
  • 272 篇 期刊文献
  • 4 册 图书

馆藏范围

  • 1,027 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 719 篇 工学
    • 523 篇 计算机科学与技术...
    • 385 篇 电气工程
    • 284 篇 控制科学与工程
    • 153 篇 软件工程
    • 83 篇 信息与通信工程
    • 41 篇 交通运输工程
    • 24 篇 仪器科学与技术
    • 21 篇 机械工程
    • 9 篇 电子科学与技术(可...
    • 9 篇 生物工程
    • 7 篇 力学(可授工学、理...
    • 7 篇 土木工程
    • 7 篇 石油与天然气工程
    • 6 篇 动力工程及工程热...
    • 4 篇 材料科学与工程(可...
    • 4 篇 生物医学工程(可授...
    • 4 篇 安全科学与工程
    • 3 篇 化学工程与技术
    • 3 篇 航空宇航科学与技...
  • 120 篇 理学
    • 98 篇 数学
    • 31 篇 系统科学
    • 22 篇 统计学(可授理学、...
    • 10 篇 生物学
    • 9 篇 物理学
    • 5 篇 化学
  • 68 篇 管理学
    • 65 篇 管理科学与工程(可...
    • 14 篇 工商管理
    • 7 篇 图书情报与档案管...
  • 5 篇 经济学
    • 4 篇 应用经济学
  • 3 篇 法学
    • 3 篇 社会学
  • 2 篇 医学
  • 1 篇 教育学

主题

  • 315 篇 reinforcement le...
  • 216 篇 dynamic programm...
  • 206 篇 optimal control
  • 110 篇 adaptive dynamic...
  • 105 篇 adaptive dynamic...
  • 97 篇 learning
  • 88 篇 neural networks
  • 79 篇 heuristic algori...
  • 67 篇 reinforcement le...
  • 58 篇 learning (artifi...
  • 54 篇 nonlinear system...
  • 52 篇 convergence
  • 52 篇 control systems
  • 51 篇 mathematical mod...
  • 48 篇 approximate dyna...
  • 44 篇 approximation al...
  • 43 篇 equations
  • 42 篇 adaptive control
  • 41 篇 cost function
  • 40 篇 artificial neura...

机构

  • 41 篇 chinese acad sci...
  • 27 篇 univ rhode isl d...
  • 17 篇 tianjin univ sch...
  • 16 篇 northeastern uni...
  • 16 篇 univ sci & techn...
  • 16 篇 univ illinois de...
  • 14 篇 beijing normal u...
  • 13 篇 northeastern uni...
  • 13 篇 guangdong univ t...
  • 12 篇 northeastern uni...
  • 9 篇 natl univ def te...
  • 8 篇 ieee
  • 8 篇 univ chinese aca...
  • 7 篇 univ chinese aca...
  • 7 篇 cent south univ ...
  • 7 篇 southern univ sc...
  • 7 篇 beijing univ tec...
  • 6 篇 chinese acad sci...
  • 6 篇 missouri univ sc...
  • 5 篇 nanjing univ pos...

作者

  • 55 篇 liu derong
  • 37 篇 wei qinglai
  • 29 篇 he haibo
  • 22 篇 wang ding
  • 21 篇 xu xin
  • 19 篇 jiang zhong-ping
  • 17 篇 lewis frank l.
  • 17 篇 yang xiong
  • 17 篇 zhang huaguang
  • 17 篇 ni zhen
  • 16 篇 zhao bo
  • 16 篇 gao weinan
  • 14 篇 zhao dongbin
  • 13 篇 zhong xiangnan
  • 12 篇 si jennie
  • 12 篇 derong liu
  • 11 篇 song ruizhuo
  • 10 篇 jagannathan s.
  • 10 篇 dongbin zhao
  • 9 篇 abouheaf mohamme...

语言

  • 970 篇 英文
  • 51 篇 其他
  • 6 篇 中文
检索条件"任意字段=IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning"
1027 条 记 录,以下是811-820 订阅
排序:
A Strategy for Converging dynamic Action Policies
A Strategy for Converging Dynamic Action Policies
收藏 引用
ieee symposium on Intelligent Agents
作者: Ribeiro, Richardson Borges, Andre P. Koerich, Alessandro L. Scalabrin, Edson E. Enembreck, Fabricio Univ Contestado UnC2 Av Nereu Ramos 1071 BR-89300000 Mafra SC Brazil Pontifical Catholic Univ Parana PUCPR Grad Program Comp Sci PPGIa B-1155 Parana Brazil
In this paper we propose a novel strategy for converging dynamic policies generated by adaptive agents, which receive and accumulate rewards for their actions. The goal of the proposed strategy is to speed up the conv... 详细信息
来源: 评论
adaptive computation of optimal nonrandomized policies in constrained average-reward MDPs
Adaptive computation of optimal nonrandomized policies in co...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning, (ADPRL)
作者: Eugene A. Feinberg Department of Applied Mathematics and Statistics Stony Brook University Stony Brook NY USA
This paper deals with computation of optimal nonrandomized nonstationary policies and mixed stationary policies for average-reward Markov decision processes with multiple criteria and constraints. We consider problems... 详细信息
来源: 评论
Feature discovery in approximate dynamic programming
Feature discovery in approximate dynamic programming
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning, (ADPRL)
作者: Philippe Preux Sertan Girgin Manuel Loth Laboratoire dInformatique Fondamentale de Lille (Computer Science Laboratory associated to the CNRS) and the INRIAINRIA Université de Lille France
Feature discovery aims at finding the best representation of data. This is a very important topic in machine learning, and in reinforcement learning in particular. Based on our recent work on feature discovery in the ... 详细信息
来源: 评论
Using reward-weighted imitation for robot reinforcement learning
Using reward-weighted imitation for robot Reinforcement Lear...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning, (ADPRL)
作者: Jan Peters Jens Kober Department of Empirical Inference and Machine Learning Max-Planck Institute of Biological Cybernetics Tubingen Germany
reinforcement learning is an essential ability for robots to learn new motor skills. Nevertheless, few methods scale into the domain of anthropomorphic robotics. In order to improve in terms of efficiency, the problem... 详细信息
来源: 评论
Neural-network-based reinforcement learning controller for nonlinear systems with non-symmetric dead-zone inputs
Neural-network-based reinforcement learning controller for n...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning, (ADPRL)
作者: Xin Zhang Huaguang Zhang Derong Liu Yongsu Kim School of Information Science and Engineering Northeastern University Shenyang Liaoning China Department of Electrical and Computer Engineering University of Illinois Chicago Chicago IL USA
A novel adaptive-critic-based NN controller using reinforcement learning is developed for a class of nonlinear systems with non-symmetric dead-zone inputs. The adaptive critic NN controller uses two NNs: the critic NN... 详细信息
来源: 评论
Inferring bounds on the performance of a control policy from a sample of trajectories
Inferring bounds on the performance of a control policy from...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning, (ADPRL)
作者: Raphael Fonteneau Susan Murphy Louis Wehenkel Damien Ernst Department of Electrical Engineering and Computer Science University of Liège Belgium University of Michigan USA
We propose an approach for inferring bounds on the finite-horizon return of a control policy from an off-policy sample of trajectories collecting state transitions, rewards, and control actions. In this paper, the dyn... 详细信息
来源: 评论
Multiagent reinforcement learning in extensive form games with complete information
Multiagent reinforcement learning in extensive form games wi...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning, (ADPRL)
作者: Ali Akramizadeh Mohammad -B. Menhaj Ahmad Afshar Center of Computational Intelligence and Large Scale System EE Department Polytechnic University Iran
Recent developments in multiagent reinforcement learning, mostly concentrate on normal form games or restrictive hierarchical form games. In this paper, we use the well known Q-learning in extensive form games which a... 详细信息
来源: 评论
Planning under uncertainty, ensembles of disturbance trees and kernelized discrete action spaces
Planning under uncertainty, ensembles of disturbance trees a...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning, (ADPRL)
作者: Boris Defourny Damien Ernst Louis Wehenkel Department of Electrical Engineering and Computer Science University of Liège Belgium
Optimizing decisions on an ensemble of incomplete disturbance trees and aggregating their first stage decisions has been shown as a promising approach to (model-based) planning under uncertainty in large continuous ac... 详细信息
来源: 评论
Integrating sporadic imitation in reinforcement learning robots
Integrating sporadic imitation in Reinforcement Learning rob...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning, (ADPRL)
作者: Willi Richert Ulrich Scheller Markus Koch Bernd Kleinjohann Claudius Stern Faculty of of Computer Science Electrical Engineering and Mathematics University of Paderborn Paderborn Germany
Although the combination of reinforcement learning and imitation has been already considered in recent research, it always revolved around fixed settings where demonstrator and imitator are fixed and the imitation pro... 详细信息
来源: 评论
Iterative local dynamic programming
Iterative local dynamic programming
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning, (ADPRL)
作者: Emanuel Todorov Yuval Tassa Department of Cognitive Science University of California San Diego USA Center of Neural Computation Hebrew University of Jerusalem Israel
We develop an iterative local dynamic programming method (iLDP) applicable to stochastic optimal control problems in continuous high-dimensional state and action spaces. Such problems are common in the control of biol... 详细信息
来源: 评论