咨询与建议

限定检索结果

文献类型

  • 743 篇 会议
  • 265 篇 期刊文献
  • 4 册 图书

馆藏范围

  • 1,012 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 704 篇 工学
    • 517 篇 计算机科学与技术...
    • 376 篇 电气工程
    • 275 篇 控制科学与工程
    • 152 篇 软件工程
    • 79 篇 信息与通信工程
    • 39 篇 交通运输工程
    • 23 篇 仪器科学与技术
    • 20 篇 机械工程
    • 9 篇 生物工程
    • 8 篇 电子科学与技术(可...
    • 7 篇 力学(可授工学、理...
    • 6 篇 动力工程及工程热...
    • 6 篇 石油与天然气工程
    • 5 篇 土木工程
    • 4 篇 航空宇航科学与技...
    • 4 篇 生物医学工程(可授...
    • 3 篇 材料科学与工程(可...
    • 3 篇 化学工程与技术
    • 3 篇 安全科学与工程
  • 119 篇 理学
    • 99 篇 数学
    • 33 篇 系统科学
    • 22 篇 统计学(可授理学、...
    • 10 篇 生物学
    • 8 篇 物理学
    • 4 篇 化学
  • 65 篇 管理学
    • 62 篇 管理科学与工程(可...
    • 15 篇 工商管理
    • 5 篇 图书情报与档案管...
  • 5 篇 经济学
    • 4 篇 应用经济学
  • 3 篇 法学
    • 3 篇 社会学
  • 2 篇 教育学
  • 2 篇 医学

主题

  • 308 篇 reinforcement le...
  • 213 篇 dynamic programm...
  • 202 篇 optimal control
  • 105 篇 adaptive dynamic...
  • 104 篇 adaptive dynamic...
  • 97 篇 learning
  • 87 篇 neural networks
  • 73 篇 heuristic algori...
  • 68 篇 reinforcement le...
  • 58 篇 learning (artifi...
  • 54 篇 nonlinear system...
  • 52 篇 control systems
  • 51 篇 convergence
  • 51 篇 mathematical mod...
  • 48 篇 approximate dyna...
  • 44 篇 approximation al...
  • 43 篇 equations
  • 43 篇 adaptive control
  • 40 篇 artificial neura...
  • 40 篇 cost function

机构

  • 41 篇 chinese acad sci...
  • 27 篇 univ rhode isl d...
  • 17 篇 tianjin univ sch...
  • 16 篇 univ sci & techn...
  • 16 篇 univ illinois de...
  • 15 篇 northeastern uni...
  • 14 篇 beijing normal u...
  • 13 篇 northeastern uni...
  • 12 篇 northeastern uni...
  • 12 篇 guangdong univ t...
  • 9 篇 natl univ def te...
  • 8 篇 ieee
  • 8 篇 univ chinese aca...
  • 7 篇 univ chinese aca...
  • 7 篇 cent south univ ...
  • 7 篇 southern univ sc...
  • 6 篇 chinese acad sci...
  • 6 篇 missouri univ sc...
  • 6 篇 beijing univ tec...
  • 5 篇 nanjing univ pos...

作者

  • 54 篇 liu derong
  • 37 篇 wei qinglai
  • 29 篇 he haibo
  • 21 篇 xu xin
  • 21 篇 wang ding
  • 19 篇 jiang zhong-ping
  • 17 篇 yang xiong
  • 17 篇 zhang huaguang
  • 17 篇 ni zhen
  • 16 篇 lewis frank l.
  • 16 篇 zhao bo
  • 15 篇 gao weinan
  • 14 篇 zhao dongbin
  • 13 篇 zhong xiangnan
  • 12 篇 si jennie
  • 11 篇 derong liu
  • 10 篇 jagannathan s.
  • 10 篇 dongbin zhao
  • 9 篇 song ruizhuo
  • 9 篇 abouheaf mohamme...

语言

  • 986 篇 英文
  • 20 篇 其他
  • 6 篇 中文
检索条件"任意字段=IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning"
1012 条 记 录,以下是81-90 订阅
排序:
Event-Triggered ADP for Tracking Control of Partially Unknown Constrained Uncertain Systems
收藏 引用
ieee TRANSACTIONS ON CYBERNETICS 2022年 第9期52卷 9001-9012页
作者: Xue, Shan Luo, Biao Liu, Derong Gao, Ying South China Univ Technol Sch Comp Sci & Engn Guangzhou 510006 Peoples R China Cent South Univ Sch Automat Changsha 410083 Peoples R China Peng Cheng Lab Shenzhen 518000 Peoples R China Univ Illinois Dept Elect & Comp Engn Chicago IL 60607 USA
An event-triggered adaptive dynamic programming (ADP) algorithm is developed in this article to solve the tracking control problem for partially unknown constrained uncertain systems. First, an augmented system is con... 详细信息
来源: 评论
On-policy Q-learning for adaptive Optimal Control
On-policy Q-learning for Adaptive Optimal Control
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning (ADPRL)
作者: Jha, Sumit Kumar Bhasin, Shubhendu Indian Inst Technol Dept Elect Engn New Delhi 110016 India
This paper presents a novel on-policy Q-learning approach for finding the optimal control policy online for continuous-time linear time invariant (LTI) systems with completely unknown dynamics. The proposed result est... 详细信息
来源: 评论
Using ADP to understand and replicate brain intelligence: the next level design
Using ADP to understand and replicate brain intelligence: th...
收藏 引用
ieee International symposium on Approximate dynamic programming and reinforcement learning
作者: Werbos, Paul J. Natl Sci Fdn Arlington VA 22203 USA
Since the 1960's I proposed that we could understand and replicate the highest level of intelligence seen in the brain, by building ever more capable and general systems for adaptive dynamic programming (ADP) - li... 详细信息
来源: 评论
Model-free Q-learning over Finite Horizon for Uncertain Linear Continuous-time Systems
Model-free <i>Q</i>-learning over Finite Horizon for Uncerta...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning (ADPRL)
作者: Xu, Hao Jagannathan, S. Texas A&M Univ Coll Sci & Engn Corpus Christi TX 78412 USA Missouri Univ Sci & Technol Dept Elect & Comp Engn Rolla MO USA
In this paper, a novel optimal control over finite horizon has been introduced for linear continuous-time systems by using adaptive dynamic programming (ADP). First, a new time-varying Q-function parameterization and ... 详细信息
来源: 评论
Multiagent reinforcement learning in extensive form games with complete information
Multiagent reinforcement learning in extensive form games wi...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning
作者: Akramizadeh, Ali Menhaj, Mohammad-B. Afshar, Ahmad Polytech Univ Tehran EE Dept Ctr Computat Intelligence & Large Scale Syst Tehran Iran
Recent developments in multiagent reinforcement learning, mostly concentrate on normal form games or restrictive hierarchical form games. In this paper, we use the well known Q-learning in extensive form games which a... 详细信息
来源: 评论
Nonparametric Infinite Horizon Kullback-Leibler Stochastic Control
Nonparametric Infinite Horizon Kullback-Leibler Stochastic C...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning (ADPRL)
作者: Pan, Yunpeng Theodorou, Evangelos A. Georgia Inst Technol Daniel Guggenheim Sch Aerosp Engn Atlanta GA 30332 USA
We present two nonparametric approaches to Kullback-Leibler (KL) control, or linearly-solvable Markov decision problem (LMDP) based on Gaussian processes (GP) and Nystrom approximation. Compared to recently developed ... 详细信息
来源: 评论
Policy Iteration adaptive dynamic programming Algorithm for Discrete-Time Nonlinear Systems
收藏 引用
ieee TRANSACTIONS ON NEURAL NETWORKS AND learning SYSTEMS 2014年 第3期25卷 621-634页
作者: Liu, Derong Wei, Qinglai Chinese Acad Sci Inst Automat State Key Lab Management & Control Complex Syst Beijing 100190 Peoples R China
This paper is concerned with a new discrete-time policy iteration adaptive dynamic programming (ADP) method for solving the infinite horizon optimal control problem of nonlinear systems. The idea is to use an iterativ... 详细信息
来源: 评论
adaptive dynamic programming for Discrete-time LQR Optimal Tracking Control Problems with Unknown dynamics
Adaptive Dynamic Programming for Discrete-time LQR Optimal T...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning (ADPRL)
作者: Liu, Yang Luo, Yanhong Zhang, Huaguang Northeastern Univ Sch Informat Sci & Engn Shenyang 110819 Liaoning Peoples R China
In this paper, an optimal tracking control approach based on adaptive dynamic programming (ADP) algorithm is proposed to solve the linear quadratic regulation (LQR) problems for unknown discrete-time systems in an onl... 详细信息
来源: 评论
adaptive Multi-Step Evaluation Design With Stability Guarantee for Discrete-Time Optimal learning Control
收藏 引用
ieee/CAA Journal of Automatica Sinica 2023年 第9期10卷 1797-1809页
作者: Ding Wang Jiangyu Wang Mingming Zhao Peng Xin Junfei Qiao IEEE Faculty of Information Technology the Beijing Key Laboratory of Computational Intelligence and Intelligent Systemthe Beijing Laboratory of Smart Environmental Protectionand the Beijing Institute of Artificial IntelligenceBeijing University of TechnologyBeijing 100124China
This paper is concerned with a novel integrated multi-step heuristic dynamic programming(MsHDP)algorithm for solving optimal control *** is shown that,initialized by the zero cost function,MsHDP can converge to the op... 详细信息
来源: 评论
adaptive dynamic programming and adaptive Optimal Output Regulation of Linear Systems
收藏 引用
ieee TRANSACTIONS ON AUTOMATIC CONTROL 2016年 第12期61卷 4164-4169页
作者: Gao, Weinan Jiang, Zhong-Ping NYU Tandon Sch Engn Dept Elect & Comp Engn Brooklyn NY 11201 USA
This note studies the adaptive optimal output regulation problem for continuous-time linear systems, which aims to achieve asymptotic tracking and disturbance rejection by minimizing some predefined costs. Reinforceme... 详细信息
来源: 评论