咨询与建议

限定检索结果

文献类型

  • 748 篇 会议
  • 271 篇 期刊文献
  • 4 册 图书

馆藏范围

  • 1,023 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 712 篇 工学
    • 520 篇 计算机科学与技术...
    • 381 篇 电气工程
    • 278 篇 控制科学与工程
    • 153 篇 软件工程
    • 79 篇 信息与通信工程
    • 40 篇 交通运输工程
    • 23 篇 仪器科学与技术
    • 20 篇 机械工程
    • 9 篇 生物工程
    • 8 篇 电子科学与技术(可...
    • 7 篇 力学(可授工学、理...
    • 7 篇 土木工程
    • 6 篇 动力工程及工程热...
    • 6 篇 石油与天然气工程
    • 4 篇 生物医学工程(可授...
    • 3 篇 材料科学与工程(可...
    • 3 篇 化学工程与技术
    • 3 篇 航空宇航科学与技...
    • 3 篇 安全科学与工程
  • 118 篇 理学
    • 98 篇 数学
    • 32 篇 系统科学
    • 22 篇 统计学(可授理学、...
    • 10 篇 生物学
    • 8 篇 物理学
    • 4 篇 化学
  • 66 篇 管理学
    • 63 篇 管理科学与工程(可...
    • 14 篇 工商管理
    • 5 篇 图书情报与档案管...
  • 5 篇 经济学
    • 4 篇 应用经济学
  • 3 篇 法学
    • 3 篇 社会学
  • 2 篇 医学
  • 1 篇 教育学

主题

  • 313 篇 reinforcement le...
  • 216 篇 dynamic programm...
  • 206 篇 optimal control
  • 107 篇 adaptive dynamic...
  • 104 篇 adaptive dynamic...
  • 97 篇 learning
  • 88 篇 neural networks
  • 78 篇 heuristic algori...
  • 68 篇 reinforcement le...
  • 58 篇 learning (artifi...
  • 54 篇 nonlinear system...
  • 53 篇 convergence
  • 51 篇 control systems
  • 51 篇 mathematical mod...
  • 48 篇 approximate dyna...
  • 44 篇 approximation al...
  • 43 篇 equations
  • 42 篇 adaptive control
  • 41 篇 artificial neura...
  • 41 篇 cost function

机构

  • 41 篇 chinese acad sci...
  • 27 篇 univ rhode isl d...
  • 17 篇 tianjin univ sch...
  • 16 篇 univ sci & techn...
  • 16 篇 univ illinois de...
  • 15 篇 northeastern uni...
  • 14 篇 beijing normal u...
  • 13 篇 northeastern uni...
  • 13 篇 guangdong univ t...
  • 12 篇 northeastern uni...
  • 9 篇 natl univ def te...
  • 8 篇 ieee
  • 8 篇 univ chinese aca...
  • 7 篇 univ chinese aca...
  • 7 篇 cent south univ ...
  • 7 篇 southern univ sc...
  • 7 篇 beijing univ tec...
  • 6 篇 chinese acad sci...
  • 6 篇 missouri univ sc...
  • 5 篇 nanjing univ pos...

作者

  • 54 篇 liu derong
  • 37 篇 wei qinglai
  • 29 篇 he haibo
  • 22 篇 wang ding
  • 21 篇 xu xin
  • 19 篇 jiang zhong-ping
  • 17 篇 lewis frank l.
  • 17 篇 yang xiong
  • 17 篇 zhang huaguang
  • 17 篇 ni zhen
  • 16 篇 zhao bo
  • 15 篇 gao weinan
  • 14 篇 zhao dongbin
  • 13 篇 derong liu
  • 13 篇 zhong xiangnan
  • 12 篇 si jennie
  • 10 篇 jagannathan s.
  • 10 篇 dongbin zhao
  • 10 篇 song ruizhuo
  • 9 篇 abouheaf mohamme...

语言

  • 992 篇 英文
  • 25 篇 其他
  • 6 篇 中文
检索条件"任意字段=IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning"
1023 条 记 录,以下是911-920 订阅
排序:
Randomly Sampling Actions In dynamic programming
Randomly Sampling Actions In Dynamic Programming
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning, (ADPRL)
作者: Christopher G. Atkeson Robotics Institute Carnegie Mellon University Pittsburgh PA USA
We describe an approach towards reducing the curse of dimensionality for deterministic dynamic programming with continuous actions by randomly sampling actions while computing a steady state value function and policy.... 详细信息
来源: 评论
The Effect of Bootstrapping in Multi-Automata reinforcement learning
The Effect of Bootstrapping in Multi-Automata Reinforcement ...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning, (ADPRL)
作者: Maarten Peeters Katja Verbeeck Ann Nowe Computational Modeling Laboratory Vrije Universiteit Brussel Brussels Belgium
learning automata are shown to be an excellent tool for creating learning multi-agent systems. Most algorithms used in current automata research expect the environment to end in an explicit end-stage. In this end-stag... 详细信息
来源: 评论
reinforcement learning in Continuous Action Spaces
Reinforcement Learning in Continuous Action Spaces
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning, (ADPRL)
作者: Hado van Hasselt Marco A. Wiering Department of Information and Computing Sciences University of Utrecht Utrecht Netherlands
Quite some research has been done on reinforcement learning in continuous environments, but the research on problems where the actions can also be chosen from a continuous space is much more limited. We present a new ... 详细信息
来源: 评论
Knowledge Transfer Using Local Features
Knowledge Transfer Using Local Features
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning, (ADPRL)
作者: Martin Stolle Christopher G. Atkeson Robotics Institute Carnegie Mellon University Pittsburgh PA USA
We present a method for reducing the effort required to compute policies for tasks based on solutions to previously solved tasks. The key idea is to use a learned intermediate policy based on local features to create ... 详细信息
来源: 评论
Two Novel On-policy reinforcement learning Algorithms based on TD(λ)-methods
Two Novel On-policy Reinforcement Learning Algorithms based ...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning, (ADPRL)
作者: Marco A. Wiering Hado van Hasselt Department of Information and Computing Sciences University of Utrecht Utrecht Netherlands
This paper describes two novel on-policy reinforcement learning algorithms, named QV(λ)-learning and the actor critic learning automaton (ACLA). Both algorithms learn a state value-function using TD(λ)-methods. The ... 详细信息
来源: 评论
Online reinforcement learning Neural Network Controller Design for Nanomanipulation
Online Reinforcement Learning Neural Network Controller Desi...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning, (ADPRL)
作者: Qinmin Yang S. Jagannathan Department of Electrical & Computer Engineering University of Missouri Rolla MO USA
In this paper, a novel reinforcement learning neural network (NN)-based controller, referred to adaptive critic controller, is proposed for affine nonlinear discrete-time systems with applications to nanomanipulation.... 详细信息
来源: 评论
Kernelizing LSPE(λ)
Kernelizing LSPE(λ)
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning, (ADPRL)
作者: Tobias Jung Daniel Polani University of Mainz Germany University of Herfordshire UK
We propose the use of kernel-based methods as underlying function approximator in the least-squares based policy evaluation framework of LSPE(λ) and LSTD(λ). In particular we present the 'kernelization' of m... 详细信息
来源: 评论
Call admission control in wireless DS-CDMA systems using actor-critic reinforcement learning
Call admission control in wireless DS-CDMA systems using act...
收藏 引用
2nd International symposium on Wireless Pervasive Computing
作者: Chanloha, Pitipong Usaha, Wipawee Suranaree Univ Technol Sch Telecommun Engn Nakhon Ratchasima 30000 Thailand
This paper addresses the call admission control (CAC) problem for multiple services in the uplink of a cellular system using direct sequential code division multiple access (DS-CDMA) when taking into account the physi... 详细信息
来源: 评论
Model-Based reinforcement learning in Factored-State MDPs
Model-Based Reinforcement Learning in Factored-State MDPs
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning, (ADPRL)
作者: Alexander L. Strehl Department of Computer Science Rutgers University Piscataway NJ USA
We consider the problem of learning in a factored-state Markov decision process that is structured to allow a compact representation. We show that the well-known algorithm, factored Rmax, performs near-optimally on al... 详细信息
来源: 评论
Opposition-Based reinforcement learning in the Management of Water Resources
Opposition-Based Reinforcement Learning in the Management of...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning, (ADPRL)
作者: M. Mahootchi H. R. Tizhoosh K. Ponnambalam Systems Design Engineering University of Waterloo Waterloo ONT Canada
Opposition-based learning (OBL) is a new scheme in machine intelligence. In this paper, an OBL version Q-learning which exploits opposite quantities to accelerate the learning is used for management of single reservoi... 详细信息
来源: 评论