咨询与建议

限定检索结果

文献类型

  • 7,723 篇 会议
  • 766 篇 期刊文献
  • 40 册 图书

馆藏范围

  • 8,529 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 5,267 篇 工学
    • 3,946 篇 计算机科学与技术...
    • 2,195 篇 电气工程
    • 1,565 篇 软件工程
    • 823 篇 信息与通信工程
    • 781 篇 控制科学与工程
    • 460 篇 生物医学工程(可授...
    • 420 篇 光学工程
    • 299 篇 电子科学与技术(可...
    • 276 篇 仪器科学与技术
    • 249 篇 生物工程
    • 232 篇 机械工程
    • 229 篇 测绘科学与技术
    • 115 篇 交通运输工程
    • 88 篇 材料科学与工程(可...
    • 78 篇 安全科学与工程
    • 73 篇 环境科学与工程(可...
    • 69 篇 化学工程与技术
  • 1,461 篇 理学
    • 572 篇 数学
    • 562 篇 物理学
    • 318 篇 生物学
    • 179 篇 地球物理学
    • 135 篇 统计学(可授理学、...
    • 86 篇 系统科学
    • 77 篇 化学
  • 697 篇 医学
    • 500 篇 临床医学
    • 169 篇 特种医学
    • 163 篇 基础医学(可授医学...
    • 85 篇 药学(可授医学、理...
  • 659 篇 管理学
    • 527 篇 管理科学与工程(可...
    • 165 篇 图书情报与档案管...
  • 80 篇 农学
  • 39 篇 法学
  • 17 篇 教育学
  • 17 篇 军事学
  • 17 篇 艺术学
  • 14 篇 经济学
  • 6 篇 文学

主题

  • 953 篇 image processing
  • 944 篇 computational mo...
  • 750 篇 image segmentati...
  • 608 篇 feature extracti...
  • 406 篇 deep learning
  • 325 篇 computational in...
  • 309 篇 image edge detec...
  • 304 篇 image reconstruc...
  • 303 篇 training
  • 297 篇 artificial intel...
  • 283 篇 computer archite...
  • 271 篇 neural networks
  • 247 篇 signal processin...
  • 228 篇 cameras
  • 223 篇 image coding
  • 207 篇 computational ef...
  • 200 篇 object detection
  • 192 篇 visualization
  • 177 篇 computer vision
  • 168 篇 computational co...

机构

  • 21 篇 obuda univ john ...
  • 18 篇 univ chinese aca...
  • 16 篇 xi an jiao tong ...
  • 15 篇 xidian univ sch ...
  • 15 篇 tianjin univ col...
  • 14 篇 signal and image...
  • 14 篇 shanghai jiao to...
  • 14 篇 john von neumann...
  • 13 篇 peng cheng lab p...
  • 12 篇 shanghai jiao to...
  • 11 篇 univ chinese aca...
  • 11 篇 northwestern pol...
  • 11 篇 huazhong univ sc...
  • 10 篇 department of co...
  • 10 篇 tsinghua univ de...
  • 10 篇 city univ hong k...
  • 9 篇 chinese acad sci...
  • 9 篇 incept inst arti...
  • 9 篇 natl univ singap...
  • 9 篇 ieee

作者

  • 17 篇 jiao licheng
  • 17 篇 zheng nanning
  • 16 篇 licheng jiao
  • 13 篇 zeng zhigang
  • 12 篇 fabio scotti
  • 12 篇 vincenzo piuri
  • 11 篇 li xin
  • 11 篇 zhang mengjie
  • 10 篇 guangtao zhai
  • 10 篇 song li
  • 10 篇 yang yang
  • 10 篇 angelo genovese
  • 10 篇 zoltán vámossy
  • 9 篇 szenasi sandor
  • 9 篇 kozlovszky miklo...
  • 9 篇 tefas anastasios
  • 9 篇 wang qi
  • 8 篇 liu yang
  • 8 篇 shi guangming
  • 8 篇 pitas ioannis

语言

  • 8,380 篇 英文
  • 99 篇 其他
  • 44 篇 中文
  • 6 篇 土耳其文
  • 1 篇 西班牙文
  • 1 篇 葡萄牙文
检索条件"任意字段=IEEE Symposium on Computational Intelligence for Image Processing"
8529 条 记 录,以下是1-10 订阅
排序:
2025 ieee symposium on computational intelligence in Natural Language processing and Social Media, CI-NLPSoMe 2025
2025 IEEE Symposium on Computational Intelligence in Natural...
收藏 引用
2025 ieee symposium on computational intelligence in Natural Language processing and Social Media, CI-NLPSoMe 2025
The proceedings contain 8 papers. The topics discussed include: multi-view autoencoders for fake news detection;identifying school shooter threats through online texts;detecting cyberbullying in Thai memes: a multimod...
来源: 评论
2025 ieee symposium on computational intelligence in Natural Language processing and Social Media, CI-NLPSoMe Companion 2025
2025 IEEE Symposium on Computational Intelligence in Natural...
收藏 引用
2025 ieee symposium on computational intelligence in Natural Language processing and Social Media, CI-NLPSoMe Companion 2025
The proceedings contain 12 papers. The topics discussed include: reconstructing weighted social networks after a node deleted with substitute node selection;ConText Mining: complementing topic models with few-shot in-...
来源: 评论
ON-BOARD MULTISPECTRAL image COMPRESSION WITH AN ARTIFICIAL intelligence BASED ALGORITHM
ON-BOARD MULTISPECTRAL IMAGE COMPRESSION WITH AN ARTIFICIAL ...
收藏 引用
ieee International Geoscience and Remote Sensing symposium (IGARSS)
作者: Guerrisi, Giorgia Bencivenni, Gianmarco Schiavon, Giovanni Del Frate, Fabio Tor Vergata Univ Rome DICII I-00133 Rome Italy GEO K Srl I-00133 Rome Italy
Remote Sensing (RS) is applied for a variety of purposes, thanks to the large availability of heterogeneous data. Furthermore, the growing number of CubeSat missions is encouraging increasingly advanced, flexible, and... 详细信息
来源: 评论
Signal Detection in Three-Dimensional Confocal Microscopy images through Deep Learning  18
Signal Detection in Three-Dimensional Confocal Microscopy Im...
收藏 引用
18th ieee International symposium on Applied computational intelligence and Informatics (SACI)
作者: Paulik, Robert Kozlovszky, Miklos Molnar, Bela Obuda Univ 3DHISTECH Ltd Budapest Hungary Obuda Univ BioTech Res Ctr Budapest Hungary 3DHISTECH Ltd Image Anal Dept Budapest Hungary
As routine pathology moves into the digital age;the spread of high-efficiency and high-resolution tissue scanners opens up the possibility of routine analysis of three-dimensional samples containing fluorescent geneti... 详细信息
来源: 评论
Generating image Counterfactuals in Deep Learning Models Without the Aid of Generative Models
收藏 引用
ieee SIGNAL processing LETTERS 2025年 32卷 1495-1499页
作者: Xu, Ao Li, Zihao Zhang, Yukai Wu, Tieru Jilin Univ Sch Artificial Intelligence Changchun 130000 Peoples R China
With the rapid development of artificial intelligence, particularly the rise of deep learning, the importance of Explainable Artificial intelligence has become increasingly prominent. Among its key techniques, counter... 详细信息
来源: 评论
Orthogonal Motion Control in image processing Applications  24
Orthogonal Motion Control in Image Processing Applications
收藏 引用
24th ieee International symposium on computational intelligence and Informatics, CINTI 2024
作者: Kovács, Bence László, Sajó-Bohus Beszédes, Bertalan Obuda University Alba Regia Faculty Székesfehérvár Hungary
The aim of my project is to offer an automation solution for examining solid-state passive detectors frequently used in particle physics. Since the detector surface often exceeds the field of view of microscopes, the ... 详细信息
来源: 评论
CSPN: A Category-Specific processing Network for Low-Light image Enhancement
收藏 引用
ieee TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 2024年 第11期34卷 11929-11941页
作者: Wu, Hongjun Wang, Chenxi Tu, Luwei Patsch, Constantin Jin, Zhi Sun Yat Sen Univ Sch Intelligent Syst Engn Shenzhen Campus Shenzhen 518107 Guangdong Peoples R China Tech Univ Munich Munich Inst Robot & Machine Intelligence TUM Sch Computat Informat & Technol Chair Media Technol D-80333 Munich Germany Sun Yat Sen Univ Sch Intelligent Syst Engn Shenzhen Campus Shenzhen 518107 Guangdong Peoples R China Guangdong Prov Key Lab Fire Sci & Technol Guangzhou 510006 Peoples R China
images captured in low-light conditions usually suffer from degradation problems. Recently, numerous deep learning-based methods are proposed for low-light image enhancement. They either focus on performance improveme... 详细信息
来源: 评论
Leveraging Cloud Resources for Distributed Training of Residual CNNs in Aerial image Classification
收藏 引用
ieee ACCESS 2025年 13卷 31131-31139页
作者: Kumar, Shantanu Singh, Shruti Kumar Dewangan, Narendra Amazon Seattle WA 98109 USA Washington State Univ IREACH Seattle WA 98195 USA Univ Petr & Energy Studies Sch Comp Sci Dehra Dun 248007 Uttaranchal India
Aerial image classification is crucial across multiple sectors, including environmental monitoring, agriculture, and urban planning. However, processing large-scale aerial imagery efficiently poses challenges in model... 详细信息
来源: 评论
DepthLux: Employing Depthwise Separable Convolutions for Low-Light image Enhancement
收藏 引用
SENSORS 2025年 第5期25卷 1530-1530页
作者: Balmez, Raul Brateanu, Alexandru Orhei, Ciprian Ancuti, Codruta O. Ancuti, Cosmin UNIV MANCHESTER Dept Comp Sci MANCHESTER M13 9PL England Polytech Univ Timisoara Fac Elect Telecommun & Informat Technol Timisoara 300223 Romania IEEE Int Symposium Elect & Telecommun ISETC Timisoara Romania
Low-light image enhancement is an important task in computer vision, often made challenging by the limitations of image sensors, such as noise, low contrast, and color distortion. These challenges are further exacerba... 详细信息
来源: 评论
Bayesian Deep Learning for image Reconstruction: From structured sparsity to uncertainty estimation
收藏 引用
ieee SIGNAL processing MAGAZINE 2023年 第1期40卷 73-84页
作者: Dong, Weisheng Wu, Jinjian Li, Leida Shi, Guangming Li, Xin Hong Kong Polytech Univ Dept Comp Hong Kong Peoples R China Xidian Univ Sch Artificial Intelligence Xian 710071 Peoples R China Nanyang Technol Univ Singapore Singapore Xidian Univ Sch Artificial Intelligence Xian 710071 Peoples R China Nanyang Technol Univ Sch Elect & Elect Engn Rapid Rich Object Search Lab Singapore Singapore Xidian Univ Sch Elect Engn Xian Peoples R China Xidian Univ Sch Artificial Intelligence Xian 710071 Peoples R China Univ Sci & Technol China Elect Engn & informat Sci Hefei Peoples R China West Virginia Univ Lane Dept Comp Sci & Elect Engn Morgantown WV 26506 USA
Conventional wisdom in model-based computational imaging incorporates physics-based imaging models, noise characteristics, and image priors into a unified Bayesian framework. Rapid advances in deep learning have inspi... 详细信息
来源: 评论