咨询与建议

限定检索结果

文献类型

  • 14,229 篇 会议
  • 1,289 篇 期刊文献
  • 4 册 图书

馆藏范围

  • 15,522 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 8,806 篇 工学
    • 5,606 篇 计算机科学与技术...
    • 3,369 篇 电气工程
    • 3,184 篇 软件工程
    • 1,025 篇 信息与通信工程
    • 753 篇 测绘科学与技术
    • 744 篇 控制科学与工程
    • 558 篇 仪器科学与技术
    • 450 篇 生物医学工程(可授...
    • 388 篇 电子科学与技术(可...
    • 350 篇 机械工程
    • 278 篇 环境科学与工程(可...
    • 200 篇 生物工程
    • 168 篇 交通运输工程
    • 160 篇 土木工程
    • 153 篇 光学工程
    • 136 篇 建筑学
  • 2,147 篇 理学
    • 749 篇 数学
    • 599 篇 地球物理学
    • 494 篇 物理学
    • 320 篇 生物学
    • 290 篇 统计学(可授理学、...
    • 147 篇 化学
    • 133 篇 系统科学
  • 973 篇 管理学
    • 628 篇 管理科学与工程(可...
    • 421 篇 图书情报与档案管...
    • 206 篇 工商管理
  • 755 篇 医学
    • 565 篇 临床医学
    • 170 篇 特种医学
    • 150 篇 基础医学(可授医学...
  • 326 篇 农学
    • 204 篇 农业资源与环境
  • 102 篇 法学
  • 57 篇 经济学
  • 48 篇 教育学
  • 35 篇 文学
  • 21 篇 艺术学
  • 10 篇 军事学

主题

  • 2,905 篇 visualization
  • 2,656 篇 data visualizati...
  • 903 篇 data analysis
  • 862 篇 data mining
  • 803 篇 task analysis
  • 660 篇 data models
  • 593 篇 algorithm design...
  • 525 篇 computational mo...
  • 525 篇 training
  • 523 篇 feature extracti...
  • 393 篇 visual analytics
  • 369 篇 big data
  • 326 篇 image color anal...
  • 319 篇 analytical model...
  • 305 篇 three-dimensiona...
  • 302 篇 computer science
  • 288 篇 information anal...
  • 277 篇 computer archite...
  • 261 篇 monitoring
  • 259 篇 remote sensing

机构

  • 48 篇 univ calif davis...
  • 44 篇 university of ca...
  • 38 篇 argonne national...
  • 36 篇 univ chinese aca...
  • 35 篇 argonne natl lab...
  • 35 篇 university of ko...
  • 31 篇 ohio state univ ...
  • 25 篇 univ utah salt l...
  • 24 篇 university of ch...
  • 23 篇 lawrence livermo...
  • 23 篇 tsinghua univers...
  • 23 篇 hong kong univ s...
  • 22 篇 pacific northwes...
  • 21 篇 purdue universit...
  • 19 篇 ohio state univ ...
  • 18 篇 univ utah sci co...
  • 18 篇 univ konstanz co...
  • 18 篇 georgia institut...
  • 18 篇 univ maryland co...
  • 18 篇 lawrence livermo...

作者

  • 52 篇 kwan-liu ma
  • 39 篇 ertl thomas
  • 35 篇 papka michael e.
  • 33 篇 keim daniel a.
  • 26 篇 schreck tobias
  • 24 篇 peterka tom
  • 23 篇 klasky scott
  • 22 篇 thomas ertl
  • 22 篇 han-wei shen
  • 20 篇 xiaoru yuan
  • 19 篇 wang chaoli
  • 19 篇 van wijk jarke j...
  • 19 篇 michael e. papka
  • 18 篇 pfister hanspete...
  • 17 篇 vishwanath venka...
  • 16 篇 podhorszki norbe...
  • 16 篇 daniel a. keim
  • 14 篇 insley joseph a.
  • 14 篇 mihai datcu
  • 14 篇 silva claudio t.

语言

  • 15,349 篇 英文
  • 108 篇 其他
  • 55 篇 中文
  • 5 篇 葡萄牙文
  • 5 篇 土耳其文
  • 1 篇 西班牙文
检索条件"任意字段=IEEE Symposium on Large Data Analysis and Visualization"
15522 条 记 录,以下是161-170 订阅
排序:
AutoGaze: A Very Initial Exploration in A SAM2-based Pipeline for Automated Eye-Object Interaction analysis in First-Person Videos
AutoGaze: A Very Initial Exploration in A SAM2-based Pipelin...
收藏 引用
Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW), ieee Conference on
作者: Qing Zhang Yifei Huang Jun Rekimoto The University of Tokyo Sony CSL Kyoto
This paper presents a novel automated workflow for analyzing eye-tracking data in first-person videos. Our system uses the Segment Anything Model 2 (SAM2) to segment and track objects, correlating them with gaze infor... 详细信息
来源: 评论
Brain-Adapter: Enhancing Neurological Disorder analysis with Adapter-Tuning Multimodal large Language Models
Brain-Adapter: Enhancing Neurological Disorder Analysis with...
收藏 引用
ieee International symposium on Biomedical Imaging
作者: Jing Zhang Xiaowei Yu Yanjun Lyu Lu Zhang Tong Chen Chao Cao Yan Zhuang Minheng Chen Tianming Liu Dajiang Zhu Computer Science and Engineering The University of Texas at Arlington Arlington TX USA Department of Computer Science Indiana University Indianapolis IN USA School of Computing The University of Georgia Athens GA USA
Understanding brain disorders is crucial for accurate clinical diagnosis and treatment. Recent advances in Multimodal large Language Models (MLLMs) offer a promising approach to interpreting medical images with the su... 详细信息
来源: 评论
Development of an Image Recognition Model Using an Image Search Function Based on Multiple Pre-Trained Models
Development of an Image Recognition Model Using an Image Sea...
收藏 引用
ieee/SICE International symposium on System Integration
作者: Hirotada Kuragane Takeshi Sasaki Graduate School of Shibaura Institute of Technology Tokyo Japan
Machine learning is widely utilized for data analysis and decision-making, with supervised and unsupervised learning being the primary approaches. However, models suffer from overfitting, where they become overly adap... 详细信息
来源: 评论
A Reality Check on Pre-training for Exemplar-free Class-Incremental Learning
A Reality Check on Pre-training for Exemplar-free Class-Incr...
收藏 引用
ieee Workshop on Applications of Computer Vision (WACV)
作者: Eva Feillet Adrian Popescu Céline Hudelot CEA List Universite Paris-Saclay Palaiseau France CentraleSupélec MICS Universite Paris-Saclay Gif-sur-Yvette France
Exemplar-free class-incremental learning (EFCIL) aims to classify streaming data without storing examples from the past. Recent EFCIL works suggest that (i) models pre-trained with large amounts of data should be used... 详细信息
来源: 评论
Efficient Human-in-the-Loop Pancreatic Tumor Annotation via large-Scale Pre-Trained Model with Adaptive Post-Processing
Efficient Human-in-the-Loop Pancreatic Tumor Annotation via ...
收藏 引用
ieee International symposium on Biomedical Imaging
作者: Xinze Zhou Yuxuan Zhao Chuntung Zhuang Dexin Yu Alan Yuille Zongwei Zhou Johns Hopkins University Qilu Hospital of Shandong University
Deep learning has significantly impacted fields like medical image analysis. However, the effectiveness of supervised learning models depends on large volumes of annotated data. Annotating medical images, especially f... 详细信息
来源: 评论
Skyeyes: Ground Roaming using Aerial View Images
Skyeyes: Ground Roaming using Aerial View Images
收藏 引用
ieee Workshop on Applications of Computer Vision (WACV)
作者: Zhiyuan Gao Wenbin Teng Gonglin Chen Jinsen Wu Ningli Xu Rongjun Qin Andrew Feng Yajie Zhao University of Southern California Institute for Creative Technologies The Ohio State University
Integrating aerial imagery-based scene generation into applications like autonomous driving and gaming enhances realism in 3D environments, but challenges remain in creating detailed content for occluded areas and ens... 详细信息
来源: 评论
Conceptual In-Context Learning and Chain of Concepts: Solving Complex Conceptual Problems Using large Language Models
Conceptual In-Context Learning and Chain of Concepts: Solvin...
收藏 引用
Computational Intelligence in Natural Language Processing and Social Media (CI-NLPSoMe), ieee symposium on
作者: Nishtha N. Vaidya Thomas A. Runkler Thomas Hubauer Veronika Haderlein-Hoegberg Maja Milicic Brandt Siemens AG Munich Germany Technical University of Munich Germany
Science and engineering problems fall in the category of complex conceptual problems that require specific conceptual information (CI) like mathllogic-related know-how, process information, or engineering guidelines t... 详细信息
来源: 评论
Ultra-High Order Independent Component analysis for Intrinsic Connectivity Networks in Resting-State Functional Magnetic Resonance Imaging data
Ultra-High Order Independent Component Analysis for Intrinsi...
收藏 引用
ieee International symposium on Biomedical Imaging
作者: Shiva Mirzaeian Kyle M. Jensen Adithya Ram Ballem Vince D. Calhoun Armin Iraji Tri-institutional Center for Translational Research in Neuroimaging and Data Science(TReNDS) Atlanta GA Department of Mathematics and Statistics Georgia State University Atlanta GA Department of Computer Science Georgia State University Atlanta GA Department of Psychology Georgia State University Atlanta GA
Spatial group independent component analysis (sgr-ICA) has become a crucial method to understand brain function in functional magnetic resonance imaging (fMRI) research, especially in resting-state fMRI (rs-fMRI) stud... 详细信息
来源: 评论
VSS-SAM: Visual State Space-Enhanced SAM for 3D Medical Image Segmentation
VSS-SAM: Visual State Space-Enhanced SAM for 3D Medical Imag...
收藏 引用
ieee International symposium on Biomedical Imaging
作者: Jinxuan Lyu Xuhao Dong Bin Zhang Shengping Liu Haifeng Wang Dong Liang Yihang Zhou Research Center for Medical AI Chinese Academy of Sciences Shenzhen Institute of Advanced Technology Shenzhen China School of Pharmacy and Bioengineering Chongqing University of Technology Chongqing China Paul C. Lauterbur Research Center for Biomedical Imaging Chinese Academy of Sciences Shenzhen Institute of Advanced Technology Shenzhen China
The Segment Anything Model (SAM) is a large general segmentation model proposed by Meta, which has shown amazing performance in many natural image segmentation tasks. Recently, MA-SAM has been proposed to transplant S... 详细信息
来源: 评论
Driving the Future of Connected Autonomous Mobility with Advanced AI and Multi-Modal data Fusion: Plenary Talk
Driving the Future of Connected Autonomous Mobility with Adv...
收藏 引用
International symposium on Applied Machine Intelligence and Informatics (SAMI)
作者: Juraj Gazda Technical University of Košice Košice Slovakia
In this talk, we will explore the intersection of connected autonomous vehicles (CAVs), edge computing, multi-agent cooperation, computer vision, and large language models (LLMs) to tackle emerging challenges in intel... 详细信息
来源: 评论