咨询与建议

限定检索结果

文献类型

  • 14,229 篇 会议
  • 1,289 篇 期刊文献
  • 4 册 图书

馆藏范围

  • 15,522 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 8,806 篇 工学
    • 5,606 篇 计算机科学与技术...
    • 3,369 篇 电气工程
    • 3,184 篇 软件工程
    • 1,025 篇 信息与通信工程
    • 753 篇 测绘科学与技术
    • 744 篇 控制科学与工程
    • 558 篇 仪器科学与技术
    • 450 篇 生物医学工程(可授...
    • 388 篇 电子科学与技术(可...
    • 350 篇 机械工程
    • 278 篇 环境科学与工程(可...
    • 200 篇 生物工程
    • 168 篇 交通运输工程
    • 160 篇 土木工程
    • 153 篇 光学工程
    • 136 篇 建筑学
  • 2,147 篇 理学
    • 749 篇 数学
    • 599 篇 地球物理学
    • 494 篇 物理学
    • 320 篇 生物学
    • 290 篇 统计学(可授理学、...
    • 147 篇 化学
    • 133 篇 系统科学
  • 973 篇 管理学
    • 628 篇 管理科学与工程(可...
    • 421 篇 图书情报与档案管...
    • 206 篇 工商管理
  • 755 篇 医学
    • 565 篇 临床医学
    • 170 篇 特种医学
    • 150 篇 基础医学(可授医学...
  • 326 篇 农学
    • 204 篇 农业资源与环境
  • 102 篇 法学
  • 57 篇 经济学
  • 48 篇 教育学
  • 35 篇 文学
  • 21 篇 艺术学
  • 10 篇 军事学

主题

  • 2,905 篇 visualization
  • 2,656 篇 data visualizati...
  • 903 篇 data analysis
  • 862 篇 data mining
  • 803 篇 task analysis
  • 660 篇 data models
  • 593 篇 algorithm design...
  • 525 篇 computational mo...
  • 525 篇 training
  • 523 篇 feature extracti...
  • 393 篇 visual analytics
  • 369 篇 big data
  • 326 篇 image color anal...
  • 319 篇 analytical model...
  • 305 篇 three-dimensiona...
  • 302 篇 computer science
  • 288 篇 information anal...
  • 277 篇 computer archite...
  • 261 篇 monitoring
  • 259 篇 remote sensing

机构

  • 48 篇 univ calif davis...
  • 44 篇 university of ca...
  • 38 篇 argonne national...
  • 36 篇 univ chinese aca...
  • 35 篇 argonne natl lab...
  • 35 篇 university of ko...
  • 31 篇 ohio state univ ...
  • 25 篇 univ utah salt l...
  • 24 篇 university of ch...
  • 23 篇 lawrence livermo...
  • 23 篇 tsinghua univers...
  • 23 篇 hong kong univ s...
  • 22 篇 pacific northwes...
  • 21 篇 purdue universit...
  • 19 篇 ohio state univ ...
  • 18 篇 univ utah sci co...
  • 18 篇 univ konstanz co...
  • 18 篇 georgia institut...
  • 18 篇 univ maryland co...
  • 18 篇 lawrence livermo...

作者

  • 52 篇 kwan-liu ma
  • 39 篇 ertl thomas
  • 35 篇 papka michael e.
  • 33 篇 keim daniel a.
  • 26 篇 schreck tobias
  • 24 篇 peterka tom
  • 23 篇 klasky scott
  • 22 篇 thomas ertl
  • 22 篇 han-wei shen
  • 20 篇 xiaoru yuan
  • 19 篇 wang chaoli
  • 19 篇 van wijk jarke j...
  • 19 篇 michael e. papka
  • 18 篇 pfister hanspete...
  • 17 篇 vishwanath venka...
  • 16 篇 podhorszki norbe...
  • 16 篇 daniel a. keim
  • 14 篇 insley joseph a.
  • 14 篇 mihai datcu
  • 14 篇 silva claudio t.

语言

  • 15,349 篇 英文
  • 108 篇 其他
  • 55 篇 中文
  • 5 篇 葡萄牙文
  • 5 篇 土耳其文
  • 1 篇 西班牙文
检索条件"任意字段=IEEE Symposium on Large Data Analysis and Visualization"
15522 条 记 录,以下是461-470 订阅
排序:
Parallel sets: Interactive exploration and visual analysis of categorical data
收藏 引用
ieee TRANSACTIONS ON visualization AND COMPUTER GRAPHICS 2006年 第4期12卷 558-568页
作者: Kosara, R Bendix, F Hauser, H Univ N Carolina Dept Comp Sci Charlotte NC 28223 USA VRVis Res Ctr A-1220 Vienna Austria
Categorical data dimensions appear in many real-world data sets, but few visualization methods exist that properly deal with them. Parallel Sets are a new method for the visualization and interactive exploration of ca... 详细信息
来源: 评论
Tracking Features in Embedded Surfaces: Understanding Extinction in Turbulent Combustion  5
Tracking Features in Embedded Surfaces: Understanding Extinc...
收藏 引用
ieee 5th symposium on large data analysis and visualization (LDAV)
作者: Widanagamaachchi, Wathsala Klacansky, Pavol Kolla, Hemanth Bhagatwala, Ankit Chen, Jackie Pascucci, Valerio Bremer, Peer-Timo Univ Utah SCI Inst Salt Lake City UT 84112 USA Sandia Natl Labs Albuquerque NM USA Lawrence Livermore Natl Lab Livermore CA USA
Understanding the temporal evolution of features of interest requires the ability to: (i) extract features from each snapshot;(ii) correlate them over time;and (iii) understand the resulting tracking graph. This paper... 详细信息
来源: 评论
10 Years of MegaMol The Pain and Gain of Creating Your Own visualization Framework
收藏 引用
ieee COMPUTER GRAPHICS AND APPLICATIONS 2018年 第1期38卷 109-114页
作者: Krone, Michael Grottel, Sebastian Reina, Guido Muller, Christoph Ertl, Thomas Univ Stuttgart Visualizat Res Ctr Stuttgart Germany Tech Univ Dresden Comp Graph & Visualizat Lab Dresden Germany Univ Stuttgart Inst Visualizat & Interact Syst Stuttgart Germany
This article discusses our experience in creating MegaMol, an open-source visualization framework for large particle-based data.
来源: 评论
Interactive visual analysis of the NSF funding information
Interactive visual analysis of the NSF funding information
收藏 引用
ieee Pacific Visualisation symposium
作者: Liu, Shixia Cao, Nan Lv, Hao IBM China Research Lab Shanghai Jiaotong University IBM China Research Lab
This paper presents an interactive visualization toolkit for navigating and analyzing the National Science Foundation (NSF) funding information. Our design builds upon the treemap layout and the stacked graph to contr... 详细信息
来源: 评论
DNS Firewall data visualization
DNS Firewall Data Visualization
收藏 引用
IFIP/ieee symposium on Integrated Network and Service Management (IM)
作者: Spacek, Stanislav Rusnak, Vit Dombajova, Anna-Marie Masaryk Univ Inst Comp Sci Brno Czech Republic Masaryk Univ Fac Informat Brno Czech Republic
Common security tools generate a lot of data suitable for further analysis. However, the raw form of the data is often too complex and useful information gets lost in a large volume of records. In this paper, we propo... 详细信息
来源: 评论
Trelliscope: A system for detailed visualization in the deep analysis of large complex data
Trelliscope: A system for detailed visualization in the deep...
收藏 引用
2013 3rd ieee symposium on large-Scale data analysis and visualization, LDAV 2013
作者: Hafen, Ryan Gosink, Luke McDermott, Jason Rodland, Karin Dam, Kerstin Kleese-Van Cleveland, William S. Pacific Northwest National Lab United States Purdue University United States
Trelliscope emanates from the Trellis Display framework for visualization and the Divide and Recombine (D&R) approach to analyzing large complex data. In Trellis, the data are broken up into subsets, a visualizati... 详细信息
来源: 评论
Beamtrees: Compact visualization of large hierarchies
Beamtrees: Compact visualization of large hierarchies
收藏 引用
ieee symposium on Information visualization (INFOVIS 2002)
作者: van Ham, F van Wijk, JJ Tech Univ Eindhoven Dept Math & Comp Sci NL-5600 MB Eindhoven Netherlands
Beamtrees are a new method for the visualization of large hierarchical data sets. Nodes are shown as stacked circular beams, such that both the hierarchical structure as well as the size of nodes are depicted. The dim... 详细信息
来源: 评论
A four-level focus plus context approach to interactive visual analysis of temporal features in large scientific data
收藏 引用
COMPUTER GRAPHICS FORUM 2008年 第3期27卷 775-782页
作者: Muigg, Philipp Kehrer, Johannes Oeltze, Steffen Piringer, Harald Doleisch, Helmut Preim, Bernhard Hauser, Helwig VRVis Res Ctr Vienna Austria Univ Magdeburg Dept Simulat & Graph D-39106 Magdeburg Germany Univ Bergen Dept Informat N-5008 Bergen Norway
In this paper we present a new approach to the interactive visual analysis of time-dependent scientific data both from measurements as well as from computational simulation-by visualizing a scalar function. over time ... 详细信息
来源: 评论
Geometric Quantification of Features in large Flow Fields
收藏 引用
ieee COMPUTER GRAPHICS AND APPLICATIONS 2012年 第4期32卷 46-54页
作者: Kendall, Wesley Huang, Jian Peterka, Tom Univ Tennessee Dept Elect Engn & Comp Sci Knoxville TN 37996 USA Argonne Natl Lab Math & Comp Sci Div Argonne IL USA
Interactive exploration of flow features in large-scale 3D unsteady-flow data is one of the most challenging visualization problems today. To comprehensively explore the complex feature spaces in these datasets, a pro... 详细信息
来源: 评论
Parallel sets: Visual analysis of categorical data
Parallel sets: Visual analysis of categorical data
收藏 引用
ieee symposium on Information visualization (InfoVis 05)
作者: Bendix, F Kosara, R Hauser, H VRVis Research Center Austria Inte:Ligand
The discrete nature of categorical data makes it a particular challenge for visualization. Methods that work very well for continuous data are often hardly usable with categorical dimensions. Only few methods deal pro... 详细信息
来源: 评论