咨询与建议

限定检索结果

文献类型

  • 14,838 篇 会议
  • 2,433 篇 期刊文献
  • 18 册 图书
  • 4 篇 学位论文
  • 1 篇 资讯

馆藏范围

  • 17,295 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 12,123 篇 工学
    • 7,475 篇 电气工程
    • 6,702 篇 计算机科学与技术...
    • 4,037 篇 信息与通信工程
    • 3,066 篇 软件工程
    • 888 篇 生物医学工程(可授...
    • 837 篇 控制科学与工程
    • 739 篇 仪器科学与技术
    • 633 篇 生物工程
    • 566 篇 电子科学与技术(可...
    • 314 篇 机械工程
    • 271 篇 光学工程
    • 173 篇 测绘科学与技术
    • 154 篇 交通运输工程
    • 145 篇 化学工程与技术
    • 119 篇 动力工程及工程热...
    • 116 篇 安全科学与工程
  • 3,771 篇 理学
    • 1,788 篇 物理学
    • 1,258 篇 数学
    • 763 篇 生物学
    • 608 篇 统计学(可授理学、...
    • 555 篇 系统科学
    • 157 篇 化学
  • 1,707 篇 医学
    • 1,516 篇 临床医学
    • 479 篇 基础医学(可授医学...
    • 280 篇 药学(可授医学、理...
    • 115 篇 公共卫生与预防医...
  • 899 篇 管理学
    • 463 篇 图书情报与档案管...
    • 447 篇 管理科学与工程(可...
    • 153 篇 工商管理
  • 140 篇 法学
    • 128 篇 社会学
  • 131 篇 农学
  • 95 篇 教育学
  • 75 篇 文学
  • 70 篇 经济学
  • 25 篇 军事学
  • 7 篇 艺术学

主题

  • 4,765 篇 machine learning
  • 1,930 篇 signal processin...
  • 1,542 篇 deep learning
  • 1,413 篇 signal processin...
  • 1,173 篇 training
  • 1,123 篇 feature extracti...
  • 857 篇 support vector m...
  • 781 篇 neural networks
  • 730 篇 machine learning...
  • 378 篇 computational mo...
  • 363 篇 conferences
  • 338 篇 data models
  • 332 篇 accuracy
  • 325 篇 electroencephalo...
  • 323 篇 task analysis
  • 307 篇 optimization
  • 292 篇 learning systems
  • 272 篇 speech processin...
  • 263 篇 training data
  • 239 篇 kernel

机构

  • 36 篇 princeton univ d...
  • 36 篇 georgia inst tec...
  • 33 篇 univ minnesota d...
  • 25 篇 nanyang technol ...
  • 23 篇 georgia inst tec...
  • 22 篇 ieee
  • 21 篇 univ chinese aca...
  • 20 篇 chitkara centre ...
  • 19 篇 princeton univ p...
  • 18 篇 chinese univ hon...
  • 18 篇 carnegie mellon ...
  • 17 篇 chitkara univers...
  • 16 篇 shanghai jiao to...
  • 16 篇 centre of resear...
  • 16 篇 natl univ singap...
  • 16 篇 shanghai jiao to...
  • 15 篇 center for machi...
  • 15 篇 hendisli&#x011f
  • 15 篇 univ illinois de...
  • 15 篇 microsoft res re...

作者

  • 28 篇 eldar yonina c.
  • 26 篇 poor h. vincent
  • 25 篇 simeone osvaldo
  • 19 篇 gabbouj moncef
  • 18 篇 chien jen-tzung
  • 17 篇 liu yang
  • 17 篇 ribeiro alejandr...
  • 16 篇 cichocki andrzej
  • 16 篇 j.c. principe
  • 14 篇 yang bin
  • 14 篇 ravishankar saip...
  • 14 篇 d. erdogmus
  • 14 篇 cao jiuwen
  • 14 篇 jenssen robert
  • 13 篇 pitas ioannis
  • 12 篇 verma naveen
  • 12 篇 jen-tzung chien
  • 12 篇 zhang min
  • 12 篇 deniz erdogmus
  • 12 篇 chang tsung-hui

语言

  • 16,871 篇 英文
  • 226 篇 其他
  • 141 篇 土耳其文
  • 53 篇 中文
  • 3 篇 西班牙文
  • 2 篇 法文
检索条件"任意字段=IEEE Workshop on Machine Learning for Signal Processing"
17295 条 记 录,以下是11-20 订阅
排序:
ieee International workshop on machine learning for signal processing, MLSP
IEEE International Workshop on Machine Learning for Signal P...
收藏 引用
2014 24th ieee International workshop on machine learning for signal processing, MLSP 2014
The proceedings contain 89 papers. The topics discussed include: mahalanobis-based one-class classification;improving the robustness of surface enhanced Raman spectroscopy based sensors by Bayesian non-negative matrix...
来源: 评论
2013 ieee International workshop on machine learning for signal processing - Proceedings of MLSP 2013
2013 IEEE International Workshop on Machine Learning for Sig...
收藏 引用
2013 16th ieee International workshop on machine learning for signal processing, MLSP 2013
The proceedings contain 102 papers. The topics discussed include: non-negative matrix completion for bandwidth extension: a convex optimization approach;diffusion map for clustering FMRI spatial maps extracted by inde...
来源: 评论
2005 ieee workshop on machine learning for signal processing
2005 IEEE Workshop on Machine Learning for Signal Processing
收藏 引用
2005 ieee workshop on machine learning for signal processing
The proceedings contain 65 papers. The topics discussed include: local linear ICA for mutual information estimation in feature selection;a proposal for blind FIR equalization of time-varying channels;overcomplete blin... 详细信息
来源: 评论
ieee International workshop on machine learning for signal processing, MLSP
IEEE International Workshop on Machine Learning for Signal P...
收藏 引用
28th ieee International workshop on machine learning for signal processing, MLSP 2018
The proceedings contain 75 papers. The topics discussed include: model-order selection in statistical shape models;monaural speech separation using a phase-aware deep denoising auto encoder;variational Bayesian partia...
来源: 评论
2007 ieee workshop on machine learning for signal processing
2007 IEEE Workshop on Machine Learning for Signal Processing
收藏 引用
2008年
作者: Konstantinos Ioannis Diamantaras
来源: 评论
Proceedings of the 2008 ieee workshop on machine learning for signal processing, MLSP 2008: Preface
Proceedings of the 2008 IEEE Workshop on Machine Learning fo...
收藏 引用
Proceedings of the 2008 ieee workshop on machine learning for signal processing, MLSP 2008 2008年 1-1页
作者: Principe, Jose C. Erdogmus, Deniz Adali, Tülay
来源: 评论
Proceedings of the 2010 ieee International workshop on machine learning for signal processing, MLSP 2010: Preface
Proceedings of the 2010 IEEE International Workshop on Machi...
收藏 引用
Proceedings of the 2010 ieee International workshop on machine learning for signal processing, MLSP 2010 2010年 ix页
作者: Kaski, Samuel Miller, David J. Oja, Erkki Honkela, Antti
来源: 评论
To appear in the 27th ieee international workshop on machine learning for signal processing (mlsp) 2017 visualizing and improving scattering networks
arXiv
收藏 引用
arXiv 2017年
作者: Cotter, Fergal Kingsbury, Nick Signal Processing Group Department of Engineering University of Cambridge United Kingdom
Scattering Transforms (or ScatterNets) introduced by Mallat in [1] are a promising start into creating a well-defined feature extractor to use for pattern recognition and image classification tasks. They are of partic... 详细信息
来源: 评论
2006 ieee workshop on machine learning for signal processing
收藏 引用
ieee Transactions on signal processing 2006年 第2期54卷 808-808页
Provides notice of upcoming conference events of interest to practitioners and researchers.
来源: 评论
2007 ieee workshop on machine learning for signal processing
收藏 引用
ieee signal processing Letters 2007年 第4期14卷 295-295页
Prospective authors are requested to submit new, unpublished manuscripts for inclusion in the upcoming event described in this call for papers.
来源: 评论