咨询与建议

限定检索结果

文献类型

  • 14,835 篇 会议
  • 2,432 篇 期刊文献
  • 23 册 图书
  • 4 篇 学位论文
  • 1 篇 资讯

馆藏范围

  • 17,296 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 12,119 篇 工学
    • 7,474 篇 电气工程
    • 6,701 篇 计算机科学与技术...
    • 4,036 篇 信息与通信工程
    • 3,064 篇 软件工程
    • 887 篇 生物医学工程(可授...
    • 837 篇 控制科学与工程
    • 738 篇 仪器科学与技术
    • 632 篇 生物工程
    • 564 篇 电子科学与技术(可...
    • 314 篇 机械工程
    • 271 篇 光学工程
    • 173 篇 测绘科学与技术
    • 154 篇 交通运输工程
    • 144 篇 化学工程与技术
    • 118 篇 动力工程及工程热...
    • 116 篇 安全科学与工程
  • 3,769 篇 理学
    • 1,789 篇 物理学
    • 1,256 篇 数学
    • 763 篇 生物学
    • 607 篇 统计学(可授理学、...
    • 555 篇 系统科学
    • 156 篇 化学
  • 1,707 篇 医学
    • 1,516 篇 临床医学
    • 479 篇 基础医学(可授医学...
    • 280 篇 药学(可授医学、理...
    • 115 篇 公共卫生与预防医...
  • 899 篇 管理学
    • 463 篇 图书情报与档案管...
    • 447 篇 管理科学与工程(可...
    • 153 篇 工商管理
  • 140 篇 法学
    • 128 篇 社会学
  • 131 篇 农学
  • 95 篇 教育学
  • 75 篇 文学
  • 70 篇 经济学
  • 25 篇 军事学
  • 7 篇 艺术学

主题

  • 4,767 篇 machine learning
  • 1,927 篇 signal processin...
  • 1,542 篇 deep learning
  • 1,413 篇 signal processin...
  • 1,173 篇 training
  • 1,123 篇 feature extracti...
  • 857 篇 support vector m...
  • 781 篇 neural networks
  • 730 篇 machine learning...
  • 378 篇 computational mo...
  • 363 篇 conferences
  • 338 篇 data models
  • 333 篇 accuracy
  • 327 篇 electroencephalo...
  • 323 篇 task analysis
  • 307 篇 optimization
  • 292 篇 learning systems
  • 272 篇 speech processin...
  • 263 篇 training data
  • 239 篇 kernel

机构

  • 36 篇 princeton univ d...
  • 36 篇 georgia inst tec...
  • 33 篇 univ minnesota d...
  • 25 篇 nanyang technol ...
  • 23 篇 georgia inst tec...
  • 22 篇 ieee
  • 21 篇 univ chinese aca...
  • 20 篇 chitkara centre ...
  • 19 篇 princeton univ p...
  • 18 篇 chinese univ hon...
  • 18 篇 carnegie mellon ...
  • 17 篇 chitkara univers...
  • 16 篇 shanghai jiao to...
  • 16 篇 centre of resear...
  • 16 篇 natl univ singap...
  • 16 篇 shanghai jiao to...
  • 15 篇 center for machi...
  • 15 篇 hendisli&#x011f
  • 15 篇 univ illinois de...
  • 15 篇 microsoft res re...

作者

  • 28 篇 eldar yonina c.
  • 26 篇 poor h. vincent
  • 25 篇 simeone osvaldo
  • 19 篇 gabbouj moncef
  • 18 篇 chien jen-tzung
  • 17 篇 liu yang
  • 17 篇 ribeiro alejandr...
  • 16 篇 cichocki andrzej
  • 16 篇 j.c. principe
  • 14 篇 yang bin
  • 14 篇 ravishankar saip...
  • 14 篇 d. erdogmus
  • 14 篇 cao jiuwen
  • 14 篇 jenssen robert
  • 13 篇 pitas ioannis
  • 12 篇 verma naveen
  • 12 篇 jen-tzung chien
  • 12 篇 zhang min
  • 12 篇 deniz erdogmus
  • 12 篇 chang tsung-hui

语言

  • 16,874 篇 英文
  • 224 篇 其他
  • 141 篇 土耳其文
  • 53 篇 中文
  • 3 篇 西班牙文
  • 2 篇 法文
检索条件"任意字段=IEEE Workshop on Machine Learning for Signal Processing"
17296 条 记 录,以下是4901-4910 订阅
排序:
Auto-correlation Property of Speech and Its Application in Voice Activity Detection
Auto-correlation Property of Speech and Its Application in V...
收藏 引用
1st International workshop on Education Technology and Computer Science
作者: Zhang Shuyin Guo Ying Wang Buhong AF Engn Univ Telecommun Engn Inst Xian Peoples R China
The paper analyzes short term auto-correlation property of speech signal and confirms it through detailed comparing experiment with other kind of signals. By applying the auto-correlation property of current speech fr... 详细信息
来源: 评论
Parallel Data-Local Training for Optimizing Word2Vec Embeddings for Word and Graph Embeddings  5
Parallel Data-Local Training for Optimizing Word2Vec Embeddi...
收藏 引用
5th ieee/ACM workshop on machine learning in High Performance Computing Environments (MLHPC)
作者: Moon, Gordon E. Newman-Griffis, Denis Kim, Jinsung Sukumaran-Rajam, Aravind Fosler-Lussier, Eric Sadayappan, P. Ohio State Univ Comp Sci & Engn Columbus OH 43210 USA Univ Utah Sch Comp Salt Lake City UT USA
The Word2Vec model is a neural network-based unsupervised word embedding technique widely used in applications such as natural language processing, bioinformatics and graph mining. As Word2Vec repeatedly performs Stoc... 详细信息
来源: 评论
ELMNET: FEATURE learning USING EXTREME learning machineS  24
ELMNET: FEATURE LEARNING USING EXTREME LEARNING MACHINES
收藏 引用
24th ieee International Conference on Image processing (ICIP)
作者: Cui, Dongshun Huang, Guang-Bin Kasun, L. L. Chamara Zhang, Guanghao Han, Wei Nanyang Technol Univ 50 Nanyang Ave Singapore 639798 Singapore
Feature learning is an initial step applied to computer vision tasks and is broadly categorized as: 1) deep feature learning;2) shallow feature learning. In this paper we focus on shallow feature learning as these alg... 详细信息
来源: 评论
learning from the Best: Active learning for Wireless Communications
收藏 引用
ieee WIRELESS COMMUNICATIONS 2024年 第4期31卷 177-183页
作者: Soltani, Nasim Zhang, Jifan Salehi, Batool Roy, Debashri Nowak, Robert Chowdhury, Kaushik Northeastern Univ Boston MA 02115 USA Northeastern Univ Comp Engn Boston MA USA Univ Wisconsin Madison Comp Sci Dept Madison WI USA Univ Wisconsin Madison Elect & Comp Engn Madison WI USA Univ Texas Arlington Arlington TX USA
Collecting an over-the-air wireless communications training dataset for deep learning-based communication tasks is relatively simple. However, labeling the dataset requires expert involvement and domain knowledge, may... 详细信息
来源: 评论
Audio-visual scene classification via contrastive event-object alignment and semantic-based fusion  24
Audio-visual scene classification via contrastive event-obje...
收藏 引用
ieee 24th International workshop on Multimedia signal processing (MMSP)
作者: Hou, Yuanbo Kang, Bo Botteldooren, Dick Univ Ghent WAVES Res Grp Ghent Belgium Univ Ghent IDLAB Ghent Belgium
Previous works on scene classification are mainly based on audio or visual signals, while humans perceive the environmental scenes through multiple senses. Recent studies on audio-visual scene classification separatel... 详细信息
来源: 评论
Supercm: Revisiting Clustering for Semi-Supervised learning  48
Supercm: Revisiting Clustering for Semi-Supervised Learning
收藏 引用
48th ieee International Conference on Acoustics, Speech and signal processing, ICASSP 2023
作者: Singh, Durgesh Boubekki, Ahcène Jenssen, Robert Kampffmeyer, Michael C. UiT the Arctic University of Norway Department of Physics and Technology Tromsø Norway
The development of semi-supervised learning (SSL) has in recent years largely focused on the development of new consistency regularization or entropy minimization approaches, often resulting in models with complex tra... 详细信息
来源: 评论
Combining Deep learning with Traditional machine learning to Improve Phonocardiography Classification Accuracy
Combining Deep Learning with Traditional Machine Learning to...
收藏 引用
2021 ieee signal processing in Medicine and Biology Symposium, SPMB 2021
作者: Chowdhury, M. Li, C. Poudel, K. Middle Tennessee State University Computational Science MurfreesboroTN37132 United States Middle Tennessee State University Department of Computer Science MurfreesboroTN United States Embry-Riddle Aeronautical University Department of Mathematics and Computer Science Florida United States
Phonocardiography (PCG) is a widely used technique to detect and diagnose cardiovascular diseases. We have combined the advantages of traditional machine learning (ML) and deep learning (DL) techniques to build deep h... 详细信息
来源: 评论
Sparse Codes Auto-Extractor for Classification: A Joint Embedding and Dictionary learning Framework for Representation
收藏 引用
ieee TRANSACTIONS ON signal processing 2016年 第14期64卷 3790-3805页
作者: Zhang, Zhao Li, Fanzhang Chow, Tommy W. S. Zhang, Li Yan, Shuicheng Soochow Univ Sch Comp Sci & Technol Suzhou 215006 Peoples R China Soochow Univ Joint Int Res Lab Machine Learning & Neuromorph C Suzhou 215006 Peoples R China Collaborat Innovat Ctr Novel Software Technol & I Nanjing 210023 Jiangsu Peoples R China City Univ Hong Kong Dept Elect Engn Kowloon Hong Kong Peoples R China Natl Univ Singapore Dept Elect & Comp Engn Singapore 119077 Singapore
In this paper, we discuss the sparse codes auto-extractor based classification. A joint label consistent embedding and dictionary learning approach is proposed for delivering a linear sparse codes auto-extractor and a... 详细信息
来源: 评论
EFFICIENT NEURAL NETWORK ARCHITECTURE FOR TOPOLOGY IDENTIFICATION IN SMART GRID
EFFICIENT NEURAL NETWORK ARCHITECTURE FOR TOPOLOGY IDENTIFIC...
收藏 引用
ieee Global Conference on signal and Information processing (GlobalSIP)
作者: Zhao, Yue Chen, Jianshu Poor, H. Vincent SUNY Stony Brook Dept Elect & Comp Engn Stony Brook NY 11794 USA Microsoft Res Redmond WA 98052 USA Princeton Univ Dept Elect Engn Princeton NJ 08544 USA
Identifying arbitrary power grid topologies in real time based on measurements in the grid is studied. A learning based approach is developed: binary classifiers are trained to approximate the maximum a-posteriori pro... 详细信息
来源: 评论
A Path Algorithm for Localizing Anomalous Activity in Graphs
A Path Algorithm for Localizing Anomalous Activity in Graphs
收藏 引用
1st ieee Global Conference on signal and Information processing (GlobalSIP)
作者: Sharpnack, James Carnegie Mellon Univ Machine Learning Dept Pittsburgh PA 15213 USA
The localization of anomalous activity in graphs is a statistical problem that arises in many applications, such as network surveillance, disease outbreak detection, and activity monitoring in social networks. We will... 详细信息
来源: 评论