咨询与建议

限定检索结果

文献类型

  • 14,821 篇 会议
  • 2,420 篇 期刊文献
  • 18 册 图书
  • 4 篇 学位论文
  • 1 篇 资讯

馆藏范围

  • 17,265 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 12,101 篇 工学
    • 7,464 篇 电气工程
    • 6,693 篇 计算机科学与技术...
    • 4,029 篇 信息与通信工程
    • 3,061 篇 软件工程
    • 886 篇 生物医学工程(可授...
    • 835 篇 控制科学与工程
    • 738 篇 仪器科学与技术
    • 631 篇 生物工程
    • 561 篇 电子科学与技术(可...
    • 314 篇 机械工程
    • 272 篇 光学工程
    • 173 篇 测绘科学与技术
    • 153 篇 交通运输工程
    • 144 篇 化学工程与技术
    • 118 篇 动力工程及工程热...
    • 116 篇 安全科学与工程
  • 3,766 篇 理学
    • 1,788 篇 物理学
    • 1,255 篇 数学
    • 762 篇 生物学
    • 606 篇 统计学(可授理学、...
    • 555 篇 系统科学
    • 156 篇 化学
  • 1,706 篇 医学
    • 1,515 篇 临床医学
    • 479 篇 基础医学(可授医学...
    • 280 篇 药学(可授医学、理...
    • 115 篇 公共卫生与预防医...
  • 898 篇 管理学
    • 463 篇 图书情报与档案管...
    • 446 篇 管理科学与工程(可...
    • 153 篇 工商管理
  • 140 篇 法学
    • 128 篇 社会学
  • 131 篇 农学
  • 95 篇 教育学
  • 75 篇 文学
  • 70 篇 经济学
  • 25 篇 军事学
  • 7 篇 艺术学

主题

  • 4,758 篇 machine learning
  • 1,922 篇 signal processin...
  • 1,541 篇 deep learning
  • 1,408 篇 signal processin...
  • 1,173 篇 training
  • 1,119 篇 feature extracti...
  • 856 篇 support vector m...
  • 781 篇 neural networks
  • 725 篇 machine learning...
  • 378 篇 computational mo...
  • 363 篇 conferences
  • 338 篇 data models
  • 332 篇 accuracy
  • 325 篇 electroencephalo...
  • 323 篇 task analysis
  • 307 篇 optimization
  • 292 篇 learning systems
  • 274 篇 speech processin...
  • 263 篇 training data
  • 239 篇 kernel

机构

  • 36 篇 princeton univ d...
  • 36 篇 georgia inst tec...
  • 33 篇 univ minnesota d...
  • 25 篇 nanyang technol ...
  • 23 篇 georgia inst tec...
  • 21 篇 univ chinese aca...
  • 21 篇 ieee
  • 20 篇 chitkara centre ...
  • 19 篇 princeton univ p...
  • 18 篇 chinese univ hon...
  • 18 篇 carnegie mellon ...
  • 17 篇 chitkara univers...
  • 16 篇 shanghai jiao to...
  • 16 篇 centre of resear...
  • 16 篇 natl univ singap...
  • 16 篇 shanghai jiao to...
  • 15 篇 center for machi...
  • 15 篇 hendisli&#x011f
  • 15 篇 univ illinois de...
  • 15 篇 microsoft res re...

作者

  • 28 篇 eldar yonina c.
  • 26 篇 poor h. vincent
  • 25 篇 simeone osvaldo
  • 19 篇 gabbouj moncef
  • 18 篇 chien jen-tzung
  • 17 篇 liu yang
  • 17 篇 ribeiro alejandr...
  • 16 篇 j.c. principe
  • 15 篇 cichocki andrzej
  • 14 篇 yang bin
  • 14 篇 ravishankar saip...
  • 14 篇 d. erdogmus
  • 14 篇 cao jiuwen
  • 14 篇 jenssen robert
  • 13 篇 pitas ioannis
  • 12 篇 jen-tzung chien
  • 12 篇 zhang min
  • 12 篇 deniz erdogmus
  • 12 篇 chang tsung-hui
  • 12 篇 samek wojciech

语言

  • 16,852 篇 英文
  • 215 篇 其他
  • 141 篇 土耳其文
  • 53 篇 中文
  • 3 篇 西班牙文
  • 2 篇 法文
检索条件"任意字段=IEEE Workshop on Machine Learning for Signal Processing"
17265 条 记 录,以下是71-80 订阅
排序:
Task Nuisance Filtration for Unsupervised Domain Adaptation
IEEE OPEN JOURNAL OF SIGNAL PROCESSING
收藏 引用
ieee OPEN JOURNAL OF signal processing 2025年 6卷 303-311页
作者: Uliel, David Giryes, Raja Tel Aviv Univ Dept Elect Engn IL-6997801 Tel Aviv Israel
In unsupervised domain adaptation (UDA) labeled data is available for one domain (Source Domain) which is generated according to some distribution, and unlabeled data is available for a second domain (Target Domain) w... 详细信息
来源: 评论
Client Selection for Generalization in Accelerated Federated learning: A Multi-Armed Bandit Approach
收藏 引用
ieee ACCESS 2025年 13卷 33697-33713页
作者: Ben Ami, Dan Cohen, Kobi Zhao, Qing Ben Gurion Univ Negev Sch Elect & Comp Engn IL-8410501 Beer Sheva Israel Cornell Univ Dept Elect & Comp Engn Ithaca NY 14853 USA
Federated learning (FL) is an emerging machine learning (ML) paradigm used to train models across multiple nodes (i.e., clients) holding local data sets, without explicitly exchanging the data. It has attracted a grow... 详细信息
来源: 评论
Complex Noise Suppression Using a Robust Dictionary learning Approach
收藏 引用
ieee GEOSCIENCE AND REMOTE SENSING LETTERS 2025年 22卷
作者: Feng, Zhenjie Anyang Inst Technol Sch Comp Sci & Informat Engn Anyang 455000 Peoples R China
Seismic data comprise reflection signals and various types of noise, including random high-frequency ambient noise, high-amplitude noise, and low-frequency ground-roll noise. Noise removal while protecting useful sign... 详细信息
来源: 评论
Low-Cost Driver Monitoring System Using Deep learning
收藏 引用
ieee ACCESS 2025年 13卷 14151-14164页
作者: Khalil, Hady A. Hammad, Sherif A. Abd El Munim, Hossam E. Maged, Shady A. Ain Shams Univ Fac Engn Dept Mechatron Engn Cairo 11571 Egypt Garraio Software Innovat Cairo 11816 Egypt Ain Shams Univ Fac Engn Dept Comp & Syst Engn Cairo 11571 Egypt
Driver monitoring systems are becoming an essential part of Advanced Driver Assistance Systems (ADAS) safety features in modern vehicles. The U.S. National Highway Traffic Safety Administration reports that drowsy/fat... 详细信息
来源: 评论
Correlation-Boosted Ensemble Local Patterns for Photoplethysmographic signal Quality Classification
收藏 引用
ieee signal processing LETTERS 2025年 32卷 61-65页
作者: Lucafo, Giovani Lima, Rafael Sandoval, Italo Albany, Luz Penatti, Otavio Samsung R&D Inst Brazil BR-13097104 Campinas SP Brazil
Photoplethysmography (PPG) is a key component in a myriad of continuous and non-invasive health monitoring solutions, increasingly widespread in wearable devices, such as smartwatches and smart rings. Its high suscept... 详细信息
来源: 评论
On the Impact of Model Compression for Bayesian Federated learning: An Analysis on Healthcare Data
收藏 引用
ieee signal processing LETTERS 2025年 32卷 251-255页
作者: Barbieri, Luca Savazzi, Stefano Nicoli, Monica Politecn Milan Dipartimento Ingn Gestionale I-20133 Milan Italy Inst Elect Informat Engn & Telecommun CNR I-20133 Milan Italy
Bayesian Federated learning (FL) policies enable multiple nodes to collaboratively train a shared machine learning (ML) model while accounting for the uncertainty of its predictions. This is accomplished by estimating... 详细信息
来源: 评论
Obstacle Detection and Warning System for Visually Impaired Using IoT Sensors
收藏 引用
ieee ACCESS 2025年 13卷 35309-35321页
作者: Ikram, Sunnia Bajwa, Imran Sarwar Ikram, Amna Diez, Isabel de la Torre Rios, Carlos Eduardo Uc Castilla, Angel Kuc Islamia Univ Bahawalpur Dept Software Engn Bahawalpur 63100 Pakistan Islamia Univ Bahawalpur Dept Comp Sci Bahawalpur 63100 Pakistan Govt Sadiq Coll Women Univ Bahawalpur Dept Comp Sci Bahawalpur 63100 Pakistan Univ Valladolid Dept Signal Theory & Commun & Telemat Engn Campus Miguel Delibes Valladolid 47011 Spain Univ Europea Atlantico Project Management Res Grp Santander 00613 Spain Univ Int Iberoamer Dept Project Management Campeche 24560 Mexico Univ La Romana Dept Project Management La Romana 22000 Dominican Rep
Ensuring safe and independent mobility for visually impaired individuals requires efficient obstacle detection systems. This study introduces an innovative smart knee glove, integrating machine learning technologies f... 详细信息
来源: 评论
Successive Refinement in Large-Scale Computation: Expediting Model Inference Applications
收藏 引用
ieee TRANSACTIONS ON signal processing 2025年 73卷 811-826页
作者: Esfahanizadeh, Homa Cohen, Alejandro Shamai, Shlomo Medard, Muriel Nokia Bell Labs Murray Hill NJ 07974 USA Technion Israel Inst Technol Elect & Comp Engn Dept IL-3200003 Haifa Israel MIT Res Lab Elect RLE Cambridge MA 02139 USA
Modern computationally-intensive applications often operate under time constraints, necessitating acceleration methods and distribution of computational workloads across multiple entities. However, the outcome is eith... 详细信息
来源: 评论
Weighted Average Consensus Algorithms in Distributed and Federated learning
收藏 引用
ieee TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 2025年 第2期12卷 1369-1382页
作者: Tedeschini, Bernardo Camajori Savazzi, Stefano Nicoli, Monica Politecn Milan I-20133 Milan Italy Consiglio Nazl Ric CNR I-20133 Milan Italy
The exponential growth of the Internet of Things (IoT) has created an essential demand for Distributed machine learning (DML) systems. In this context, Federated learning (FL) allows IoT devices to collaboratively tra... 详细信息
来源: 评论
Representation Transfer learning via Multiple Pre-Trained Models for Linear Regression
收藏 引用
ieee JOURNAL OF SELECTED TOPICS IN signal processing 2025年 第1期19卷 208-220页
作者: Singh, Navjot Diggavi, Suhas Univ Calif Los Angeles Dept Elect & Comp Engn Los Angeles CA 90025 USA
In this paper, we consider the problem of learning a linear regression model on a data domain of interest (target) given few samples. To aid learning, we are provided with a set of pre-trained regression models that a... 详细信息
来源: 评论