咨询与建议

限定检索结果

文献类型

  • 129 篇 会议
  • 18 篇 期刊文献
  • 2 册 图书

馆藏范围

  • 149 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 78 篇 工学
    • 56 篇 计算机科学与技术...
    • 18 篇 软件工程
    • 13 篇 电气工程
    • 12 篇 机械工程
    • 10 篇 仪器科学与技术
    • 7 篇 光学工程
    • 7 篇 控制科学与工程
    • 5 篇 电子科学与技术(可...
    • 3 篇 测绘科学与技术
    • 3 篇 生物医学工程(可授...
    • 2 篇 力学(可授工学、理...
    • 2 篇 动力工程及工程热...
    • 2 篇 建筑学
    • 2 篇 土木工程
    • 1 篇 信息与通信工程
    • 1 篇 化学工程与技术
    • 1 篇 生物工程
  • 44 篇 理学
    • 32 篇 数学
    • 14 篇 物理学
    • 6 篇 系统科学
    • 6 篇 统计学(可授理学、...
    • 3 篇 生物学
    • 1 篇 化学
    • 1 篇 地球物理学
  • 12 篇 医学
    • 12 篇 临床医学
    • 1 篇 基础医学(可授医学...
    • 1 篇 药学(可授医学、理...
  • 3 篇 管理学
    • 3 篇 图书情报与档案管...
  • 1 篇 法学
    • 1 篇 社会学

主题

  • 38 篇 image segmentati...
  • 36 篇 computer vision
  • 27 篇 level set
  • 15 篇 active contours
  • 14 篇 shape
  • 11 篇 training
  • 10 篇 biomedical imagi...
  • 9 篇 layout
  • 8 篇 computer science
  • 8 篇 object detection
  • 8 篇 image processing
  • 8 篇 feature extracti...
  • 8 篇 bayesian methods
  • 8 篇 equations
  • 8 篇 image reconstruc...
  • 7 篇 topology
  • 7 篇 smoothing method...
  • 6 篇 deformable model...
  • 6 篇 application soft...
  • 6 篇 cameras

机构

  • 3 篇 applied mathemat...
  • 2 篇 department of el...
  • 2 篇 department of ci...
  • 2 篇 department of ma...
  • 2 篇 inria sophia-ant...
  • 2 篇 univ calif los a...
  • 2 篇 department of di...
  • 2 篇 univ mannheim de...
  • 2 篇 department of ma...
  • 1 篇 tno phys & elect...
  • 1 篇 university of sc...
  • 1 篇 department of ap...
  • 1 篇 key laboratory o...
  • 1 篇 coordinated scie...
  • 1 篇 univ paris 09 ce...
  • 1 篇 school of comput...
  • 1 篇 us air force res...
  • 1 篇 univ florida dep...
  • 1 篇 ceremade umr cnr...
  • 1 篇 computer science...

作者

  • 3 篇 solem jan erik
  • 3 篇 cremers d
  • 3 篇 osher s
  • 2 篇 s. osher
  • 2 篇 schnörr c
  • 2 篇 olivier faugeras
  • 2 篇 y. chen
  • 2 篇 a. yezzi
  • 2 篇 paragios n
  • 2 篇 r. deriche
  • 2 篇 vese la
  • 2 篇 weickert j
  • 2 篇 chan tf
  • 2 篇 yezzi a
  • 2 篇 weickert joachim
  • 2 篇 tony chan
  • 2 篇 cremers daniel
  • 2 篇 b.c. vemuri
  • 2 篇 heyden anders
  • 2 篇 mubarak shah

语言

  • 147 篇 英文
  • 1 篇 其他
  • 1 篇 中文
检索条件"任意字段=IEEE Workshop on Variational and Level Set Methods in Computer Vision"
149 条 记 录,以下是141-150 订阅
排序:
Human object interactions recognition based on social network analysis
Human object interactions recognition based on social networ...
收藏 引用
Applied Imagery Pattern Recognition workshop (AIPR)
作者: Guang Yang Yafeng Yin Hong Man Department of Electrical and Computer Engineering Stevens Institute of Technology Hoboken NJ USA
Recognizing human-object interactions in videos is a very challenging problem in computer vision research. There are two major difficulties lying in this task: (1) The detection of human body parts and objects is usua... 详细信息
来源: 评论
X-SAR SpotLigh images feature selection and water segmentation
X-SAR SpotLigh images feature selection and water segmentati...
收藏 引用
ieee International workshop on Imaging Systems and Techniques (IST)
作者: Bruno Cafaro Silvia Canale Fiora Pirri Department of Computer Control and Management Engineering |A. Ruberti| Sapienza Università di Roma Roma Italy
In this paper we address the feature selection problem for X-SAR images and further the segmentation of specific chosen classes. After defining a suitable feature space for X-SAR images we select the most significant ... 详细信息
来源: 评论
Adversarial Defense based on Structure-to-Signal Autoencoders
Adversarial Defense based on Structure-to-Signal Autoencoder...
收藏 引用
ieee workshop on Applications of computer vision (WACV)
作者: Joachim Folz Sebastian Palacio Joern Hees Andreas Dengel German Research Center for Artificial Intelligence (DFKI) TU Kaiserslautern
Adversarial attacks have exposed the intricacies of the complex loss surfaces approximated by neural networks. In this paper, we present a defense strategy against gradient-based attacks, on the premise that input gra... 详细信息
来源: 评论
variational image segmentation models: Application to medical images MRI
Variational image segmentation models: Application to medica...
收藏 引用
ieee International Conference on Multimedia Computing and Systems (ICMCS)
作者: Samir Bara Mounir Ait Kerroum Ahmed Hammouch Driss Aboutajdine UFR LRIT Faculty of Sciences Mohamed V-Agdal University Rabat Morocco Equipe Imagerie et Multimedia Laboratoire LARIT ENCG Université Ibn Tofail Kenitra Morocco Laboratory LRGE ENSET Mohammed-V University Rabat Morocco
Image segmentation is an important branch of computer vision. Its aim is to extract meaningful lying in objects images, either by dividing images into contiguous semantic regions, or by extracting one or several objec... 详细信息
来源: 评论
NTIRE 2023 Image Shadow Removal Challenge Report
NTIRE 2023 Image Shadow Removal Challenge Report
收藏 引用
2023 ieee/CVF Conference on computer vision and Pattern Recognition workshops, CVPRW 2023
作者: Vasluianu, Florin-Alexandru Seizinger, Tim Timofte, Radu Cui, Shuhao Huang, Junshi Tian, Shuman Fan, Mingyuan Zhang, Jiaqi Zhu, Li Wei, Xiaoming Wei, Xiaolin Luo, Ziwei Gustafsson, Fredrik K. Zhao, Zheng Sjölund, Jens Schön, Thomas B. Dong, Xiaoyi Zhang, Xi Sheryl Li, Chenghua Leng, Cong Yeo, Woon-Ha Oh, Wang-Taek Lee, Yeo-Reum Ryu, Han-Cheol Luo, Jinting Jiang, Chengzhi Han, Mingyan Wu, Qi Lin, Wenjie Yu, Lei Li, Xinpeng Jiang, Ting Fan, Haoqiang Liu, Shuaicheng Xu, Shuning Song, Binbin Chen, Xiangyu Zhang, Shile Zhou, Jiantao Zhang, Zhao Zhao, Suiyi Zheng, Huan Gao, Yangcheng Wei, Yanyan Wang, Bo Ren, Jiahuan Luo, Yan Kondo, Yuki Miyata, Riku Yasue, Fuma Naruki, Taito Ukita, Norimichi Chang, Hua-En Yang, Hao-Hsiang Chen, Yi-Chung Chiang, Yuan-Chun Huang, Zhi-Kai Chen, Wei-Ting Chen, I-Hsiang Hsieh, Chia-Hsuan Kuo, Sy-Yen Xianwei, Li Fu, Huiyuan Liu, Chunlin Ma, Huadong Fu, Binglan He, Huiming Wang, Mengjia She, Wenxuan Liu, Yu Nathan, Sabari Kansal, Priya Zhang, Zhongjian Yang, Huabin Wang, Yan Zhang, Yanru Phutke, Shruti S. Kulkarni, Ashutosh Khan, Md Raqib Murala, Subrahmanyam Vipparthi, Santosh Kumar Ye, Heng Liu, Zixi Yang, Xingyi Liu, Songhua Wu, Yinwei Jing, Yongcheng Yu, Qianhao Zheng, Naishan Huang, Jie Long, Yuhang Yao, Mingde Zhao, Feng Zhao, Bowen Ye, Nan Shen, Ning Cao, Yanpeng Xiong, Tong Xia, Weiran Li, Dingwen Xia, Shuchen Computer Vision Lab Ifi Caidas University of Würzburg Germany Computer Vision Lab Eth Zürich Switzerland Meituan Group China Department of Information Technology Uppsala University Sweden Institute of Automation Chinese Academy of Sciences Beijing China Nanjing China Maicro Nanjing China Department of Artificial Intelligence Convergence Sahmyook University Seoul Korea Republic of Megvii Technology China University of Electronic Science and Technology of China China University of Macau China China Toyota Technological Institute Japan Graduate Institute of Electronics Engineering National Taiwan University Taiwan Department of Electrical Engineering National Taiwan University Taiwan Graduate Institute of Communication Engineering National Taiwan University Taiwan ServiceNow United States Beijing University of Post and Teleconmunication Beijing China Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education China Couger Inc. Computer Vision and Pattern Recognition Lab Indian Institute of Technology Ropar Punjab Rupnagar India Research Institute Singapore National University of Singapore Singapore Research Institute Singapore University of Sydney Australia Brain-Inspired Vision Laboratory Information Science and Technology Institution University of Science and Technology of China China State Key Laboratory of Fluid Power and Mechatronic Systems School of Mechanical Engineering Zhejiang University Hangzhou310027 China Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province School of Mechanical Engineering Zhejiang University Hangzhou310027 China South China University of Technology China
This work reviews the results of the NTIRE 2023 Challenge on Image Shadow Removal. The described set of solutions were proposed for a novel dataset, which captures a wide range of object-light interactions. It consist... 详细信息
来源: 评论
RPM-Net: Robust Pixel-level Matching Networks for Self-Supervised Video Object Segmentation
RPM-Net: Robust Pixel-Level Matching Networks for Self-Super...
收藏 引用
ieee workshop on Applications of computer vision (WACV)
作者: Youngeun Kim Seokeon Choi Hankyeol Lee Taekyung Kim Changick Kim KAIST
In this paper, we introduce a self-supervised approach for video object segmentation without human labeled data. Specifically, we present Robust Pixel-level Matching Networks (RPM-Net), a novel deep architecture that ... 详细信息
来源: 评论
Generating Positive Bounding Boxes for Balanced Training of Object Detectors
Generating Positive Bounding Boxes for Balanced Training of ...
收藏 引用
ieee workshop on Applications of computer vision (WACV)
作者: Kemal Oksuz Baris Can Cam Emre Akbas Sinan Kalkan Department of Computer Engineering Middle East Technical University Ankara Turkey
Two-stage deep object detectors generate a set of regions-of-interest RoIs in the first stage, then, in the second stage, identify objects among the proposed RoIs that sufficiently overlap with a ground truth (GT) box... 详细信息
来源: 评论
MotionRec: A Unified Deep Framework for Moving Object Recognition
MotionRec: A Unified Deep Framework for Moving Object Recogn...
收藏 引用
ieee workshop on Applications of computer vision (WACV)
作者: Murari Mandal Lav Kush Kumar Mahipal Singh Saran Santosh Kumar Vipparthi Vision Intelligence Lab Malaviya National Institute of Technology Jaipur India
In this paper we present a novel deep learning framework to perform online moving object recognition (MOR) in streaming videos. The existing methods for moving object detection (MOD) only computes class-agnostic pixel... 详细信息
来源: 评论
AIM 2019 Challenge on Real-World Image Super-Resolution: methods and Results
AIM 2019 Challenge on Real-World Image Super-Resolution: Met...
收藏 引用
International Conference on computer vision workshops (ICCV workshops)
作者: Andreas Lugmayr Martin Danelljan Radu Timofte Manuel Fritsche Shuhang Gu Kuldeep Purohit Praveen Kandula Maitreya Suin Rajagoapalan A. N. Nam Hyung Joon Yu Seung Won Guisik Kim Dokyeong Kwon Chih-Chung Hsu Chia-Hsiang Lin Yuanfei Huang Xiaopeng Sun Wen Lu Jie Li Xinbo Gao Sefi Bell-Kligler Assaf Shocher Michal Irani ETH Zurich No Affiliation
This paper reviews the AIM 2019 challenge on real world super-resolution. It focuses on the participating methods and final results. The challenge addresses the real world setting, where paired true high and low-resol... 详细信息
来源: 评论