咨询与建议

限定检索结果

文献类型

  • 8,902 篇 会议
  • 42 篇 期刊文献
  • 18 册 图书

馆藏范围

  • 8,961 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 4,560 篇 工学
    • 4,019 篇 计算机科学与技术...
    • 2,178 篇 软件工程
    • 1,242 篇 光学工程
    • 555 篇 控制科学与工程
    • 431 篇 信息与通信工程
    • 429 篇 机械工程
    • 294 篇 电气工程
    • 287 篇 仪器科学与技术
    • 179 篇 生物工程
    • 159 篇 生物医学工程(可授...
    • 119 篇 电子科学与技术(可...
    • 61 篇 安全科学与工程
    • 58 篇 建筑学
    • 58 篇 化学工程与技术
    • 52 篇 土木工程
    • 49 篇 交通运输工程
    • 40 篇 力学(可授工学、理...
  • 2,065 篇 理学
    • 1,382 篇 物理学
    • 1,198 篇 数学
    • 420 篇 统计学(可授理学、...
    • 238 篇 生物学
    • 54 篇 化学
    • 36 篇 系统科学
  • 263 篇 管理学
    • 180 篇 图书情报与档案管...
    • 89 篇 管理科学与工程(可...
    • 47 篇 工商管理
  • 222 篇 医学
    • 221 篇 临床医学
    • 39 篇 基础医学(可授医学...
  • 205 篇 艺术学
    • 205 篇 设计学(可授艺术学...
  • 45 篇 法学
    • 43 篇 社会学
  • 21 篇 农学
  • 14 篇 教育学
  • 9 篇 经济学
  • 6 篇 军事学

主题

  • 3,413 篇 computer vision
  • 1,216 篇 pattern recognit...
  • 946 篇 cameras
  • 908 篇 conferences
  • 765 篇 computer science
  • 674 篇 image segmentati...
  • 618 篇 layout
  • 598 篇 training
  • 548 篇 shape
  • 518 篇 robustness
  • 451 篇 feature extracti...
  • 448 篇 humans
  • 445 篇 face recognition
  • 405 篇 computational mo...
  • 402 篇 object detection
  • 365 篇 visualization
  • 356 篇 computer archite...
  • 336 篇 application soft...
  • 304 篇 lighting
  • 258 篇 image reconstruc...

机构

  • 41 篇 microsoft resear...
  • 30 篇 department of co...
  • 25 篇 department of co...
  • 23 篇 institute for co...
  • 22 篇 department of co...
  • 22 篇 school of comput...
  • 20 篇 university of sc...
  • 20 篇 swiss fed inst t...
  • 19 篇 tsinghua univers...
  • 19 篇 institute of com...
  • 18 篇 swiss fed inst t...
  • 17 篇 the robotics ins...
  • 17 篇 carnegie mellon ...
  • 17 篇 computer vision ...
  • 17 篇 department of co...
  • 16 篇 institute of inf...
  • 16 篇 school of comput...
  • 15 篇 school of comput...
  • 15 篇 carnegie mellon ...
  • 14 篇 national laborat...

作者

  • 57 篇 timofte radu
  • 25 篇 huang thomas s.
  • 24 篇 van gool luc
  • 23 篇 s.k. nayar
  • 22 篇 nayar shree k.
  • 22 篇 t. kanade
  • 21 篇 jain anil k.
  • 20 篇 luc van gool
  • 19 篇 t.s. huang
  • 18 篇 xiaoou tang
  • 18 篇 murino vittorio
  • 18 篇 horst bischof
  • 17 篇 a.k. jain
  • 17 篇 t. darrell
  • 16 篇 g. healey
  • 16 篇 bowyer kevin w.
  • 16 篇 bischof horst
  • 15 篇 m.j. black
  • 15 篇 li stan z.
  • 15 篇 m. shah

语言

  • 8,913 篇 英文
  • 40 篇 其他
  • 8 篇 中文
  • 1 篇 土耳其文
检索条件"任意字段=IEEE-Computer-Society Conference on Computer Vision and Pattern Recognition Workshops"
8962 条 记 录,以下是1711-1720 订阅
排序:
Multi-Explainable TemporalNet: An Interpretable Multimodal Approach using Temporal Convolutional Network for User-level Depression Detection
Multi-Explainable TemporalNet: An Interpretable Multimodal A...
收藏 引用
ieee computer society conference on computer vision and pattern recognition workshops (CVPRW)
作者: Anas Zafar Danyal Aftab Rizwan Qureshi Yaofeng Wang Hong Yan Fast School of Computing National University of Computer and Emerging Sciences Karachi Pakistan Technological University Dublin Dublin Ireland Center for Regenerative Medicine and Health Hong Kong Institute of Science and Innovation Chinese Academy of Sciences Hong Kong SAR China Department of Electrical Engineering City University of Hong Kong Hong Kong
Multimodal depression detection through internet-based data such as social media platforms has been an important problem in the research community, aiming to predict human mental states for ensuring wellbeing of the s... 详细信息
来源: 评论
Efficient Deep Models for Real-Time 4K Image Super-Resolution. NTIRE 2023 Benchmark and Report
Efficient Deep Models for Real-Time 4K Image Super-Resolutio...
收藏 引用
2023 ieee/CVF conference on computer vision and pattern recognition workshops, CVPRW 2023
作者: Conde, Marcos V. Zamfir, Eduard Timofte, Radu Motilla, Daniel Liu, Cen Zhang, Zexin Peng, Yunbo Lin, Yue Guo, Jiaming Zou, Xueyi Chen, Yuyi Liu, Yi Hao, Jia Yan, Youliang Zhang, Yuanfan Li, Gen Sun, Lei Kong, Lingshun Bai, Haoran Pan, Jinshan Dong, Jiangxin Tang, Jinhui Ayazoglu, Mustafa Bilecen, Bahri Batuhan Li, Mingxi Zhang, Yuhang Fan, Xianjun Sheng, Yankai Sun, Long Liu, Zibin Gou, Weiran Li, Shaoqing Yi, Ziyao Xiang, Yan Kong, Dehui Xu, Ke Gankhuyag, Ganzorig Yoon, Kihwan Zhang, Jin Yu, Gaocheng Zhang, Feng Wang, Hongbin Zhou, Zhou Chao, Jiahao Gao, Hongfan Gong, Jiali Yang, Zhengfeng Zeng, Zhenbing Chen, Chengpeng Guo, Zichao Park, Anjin Liu, Yuqing Jia, Qi Yu, Hongyuan Yin, Xuanwu Zuo, Kunlong Zhang, Dongyang Fu, Ting Cheng, Zhengxue Zhu, Shiai Zhou, Dajiang Yu, Weichen Ge, Lin Dong, Jiahua Zou, Yajun Wu, Zhuoyuan Han, Binnan Zhang, Xiaolin Zhang, Heng Shao, Ben Zheng, Shaolong Yin, Daheng Chen, Baijun Liu, Mengyang Nistor, Marian-Sergiu Chen, Yi-Chung Huang, Zhi-Kai Chiang, Yuan-Chun Chen, Wei-Ting Yang, Hao-Hsiang Chang, Hua-En Chen, I-Hsiang Hsieh, Chia-Hsuan Kuo, Sy-Yen Vo, Tu Yan, Qingsen Zhu, Yun Su, Jinqiu Zhang, Yanning Zhang, Cheng Luo, Jiaying Cho, Youngsun Lee, Nakyung Computer Vision Lab CAIDAS IFI University of Würzburg Germany Sony Interactive Entertainment CA United States Huawei Technologies Co. Ltd. China NetEase Games AI Lab Nanjing University of Science and Technology China Tencent China Attrsense Korea Republic of Sanechips Co Ltd Ant Group China East China Normal University China Shopee Dalian University of Technology Xiaomi Inc. China China Zhejiang Dahua Technology Co. Ltd. China Multimedia Department Xiaomi Inc. China Korea Photonic Technology Institute Korea Republic of School of Computer Science and Engineering Southeast University China University Al. I. Cuza Iasi Romania Graduate Institute of Electronics Engineering National Taiwan University Taiwan Department of Electrical Engineering National Taiwan University Taiwan Graduate Institute of Communication Engineering National Taiwan University Taiwan ServiceNow United States Northwestern Polytechnical University China KC Machine Learning Lab CJ OliveNetworks AI Research
This paper introduces a novel benchmark for efficient up-scaling as part of the NTIRE 2023 Real-Time Image Super-Resolution (RTSR) Challenge, which aimed to upscale images from 720p and 1080p resolution to native 4K (... 详细信息
来源: 评论
DOAD: Decoupled One Stage Action Detection Network
DOAD: Decoupled One Stage Action Detection Network
收藏 引用
ieee computer society conference on computer vision and pattern recognition workshops (CVPRW)
作者: Shuning Chang Pichao Wang Fan Wang Jiashi Feng Mike Zheng Shou Showlab National University of Singapore Alibaba Group National University of Singapore
Localizing people and recognizing their actions from videos is a challenging task towards high-level video understanding. Existing methods are mostly two-stage based, with one stage for person bounding box generation ... 详细信息
来源: 评论
NTIRE 2024 Challenge on Short-form UGC Video Quality Assessment: Methods and Results
NTIRE 2024 Challenge on Short-form UGC Video Quality Assessm...
收藏 引用
ieee computer society conference on computer vision and pattern recognition workshops (CVPRW)
作者: Xin Li Kun Yuan Yajing Pei Yiting Lu Ming Sun Chao Zhou Zhibo Chen Radu Timofte Wei Sun Haoning Wu Zicheng Zhang Jun Jia Zhichao Zhang Linhan Cao Qiubo Chen Xiongkuo Min Weisi Lin Guangtao Zhai JianHui Sun Tianyi Wang Lei Li Han Kong Wenxuan Wang Bing Li Cheng Luo Haiqiang Wang Xiangguang Chen Wenhui Meng Xiang Pan Huiying Shi Han Zhu Xiaozhong Xu Lei Sun Zhenzhong Chen Shan Liu Fangyuan Kong Haotian Fan Yifang Xu Haoran Xu Mengduo Yang Jie Zhou Jiaze Li Shijie Wen Mai Xu Da Li Shunyu Yao Jiazhi Du Wangmeng Zuo Zhibo Li Shuai He Anlong Ming Huiyuan Fu Huadong Ma Yong Wu Fie Xue Guozhi Zhao Lina Du Jie Guo Yu Zhang Huimin Zheng Junhao Chen Yue Liu Dulan Zhou Kele Xu Qisheng Xu Tao Sun Zhixiang Ding Yuhang Hu
This paper reviews the NTIRE 2024 Challenge on Short-form UGC Video Quality Assessment (S-UGC VQA), where various excellent solutions are submitted and evaluated on the collected dataset KVQ from popular short-form vi... 详细信息
来源: 评论
LGFN: Lightweight Light Field Image Super-Resolution using Local Convolution Modulation and Global Attention Feature Extraction
LGFN: Lightweight Light Field Image Super-Resolution using L...
收藏 引用
ieee computer society conference on computer vision and pattern recognition workshops (CVPRW)
作者: Zhongxin Yu Liang Chen Zhiyun Zeng Kunping Yang Shaofei Luo Shaorui Chen Cheng Zhong Fujian Normal University
Capturing different intensity and directions of light rays at the same scene, Light field (LF) can encode the 3D scene cues into a 4D LF image, which has a wide range of applications (i.e., post-capture refocusing and... 详细信息
来源: 评论
EfficientNet-SAM: A Novel EffecientNet with Spatial Attention Mechanism for COVID-19 Detection in Pulmonary CT Scans
EfficientNet-SAM: A Novel EffecientNet with Spatial Attentio...
收藏 引用
ieee computer society conference on computer vision and pattern recognition workshops (CVPRW)
作者: Ramy Farag Parth Upadhay Jacket Demby’s Yixiang Gao Katherin Garces Montoya Seyed Mohamad Ali Tousi Gbenga Omotara Guilherme DeSouza Department of Electrical Engineering and Computer Science Vision-Guided and Intelligent Robotics Lab - ViGIR Lab University of Missouri-Columbia
Manual analysis and diagnosis of COVID-19 through the examination of Computed Tomography (CT) images of the lungs can be time-consuming and result in errors, especially given high volume of patients and numerous image... 详细信息
来源: 评论
Manifold DivideMix: A Semi-Supervised Contrastive Learning Framework for Severe Label Noise
Manifold DivideMix: A Semi-Supervised Contrastive Learning F...
收藏 引用
ieee computer society conference on computer vision and pattern recognition workshops (CVPRW)
作者: Fahimeh Fooladgar Minh Nguyen Nhat To Parvin Mousavi Purang Abolmaesumi Department of Electrical and Computer Engineering University of British Columbia CA School of Computing Queen’s University CA
Deep neural networks have proven to be highly effective when large amounts of data with clean labels are available. However, their performance degrades when training data contains noisy labels, leading to poor general... 详细信息
来源: 评论
DepthVoting: A Few-Shot Point Cloud Classification Model Incorporating a Projection-Based Voting Mechanism
DepthVoting: A Few-Shot Point Cloud Classification Model Inc...
收藏 引用
ieee computer society conference on computer vision and pattern recognition workshops (CVPRW)
作者: Yunhui Zhu Jiajing Chen Senem Velipasalar Electrical Engineering and Computer Science Dept. Syracuse University Syracuse NY USA
Despite the significant progress in few-shot 2D image classification, few-shot 3D point cloud classification remains relatively under-explored, particularly in addressing the challenges posed by missing points in 3D p... 详细信息
来源: 评论
Development of a Verilog-Based System for pattern Detection Using Convolutional Neural Networks  2
Development of a Verilog-Based System for Pattern Detection ...
收藏 引用
2nd International conference on Recent Trends in Microelectronics, Automation, Computing, and Communications Systems, ICMACC 2024
作者: Kandula, Bala Sindhuri Singh, Sangeeta Tata, Subhashini Manasaveena, T. Bolisetty, V Vijayasri Sadguna Kumari, V. S.R.K.R Engineering College Department of E.C.E Bhimavaram India Vardhaman College of Engineering Hyderabad Department of E.C.E Telangana India SR Gudlavalleru Engineering College Department of E.C.E Gudlavalleru India NRI Institute of Technology Department of E.C.E Vijayawada India Aditya College of Engineering and Technology Department of E.C.E Surampalem India Pydah College of Engineering Department of E.C.E Kakinada India
pattern detection is a foundational element in computer vision, crucial for advancements in autonomous driving, surveillance, and numerous other fields. Convolutional Neural Networks (CNNs) have significantly enhanced... 详细信息
来源: 评论
A Hybrid ANN-SNN Architecture for Low-Power and Low-Latency Visual Perception
A Hybrid ANN-SNN Architecture for Low-Power and Low-Latency ...
收藏 引用
ieee computer society conference on computer vision and pattern recognition workshops (CVPRW)
作者: Asude Aydin Mathias Gehrig Daniel Gehrig Davide Scaramuzza Robotics and Perception Group University of Zurich Switzerland
Spiking Neural Networks (SNNs) are a class of bio-inspired neural networks that promise to bring low-power and low-latency inference to edge-devices through the use of asynchronous and sparse processing. However, bein... 详细信息
来源: 评论