咨询与建议

限定检索结果

文献类型

  • 8,901 篇 会议
  • 43 篇 期刊文献
  • 18 册 图书

馆藏范围

  • 8,961 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 4,560 篇 工学
    • 4,020 篇 计算机科学与技术...
    • 2,178 篇 软件工程
    • 1,241 篇 光学工程
    • 555 篇 控制科学与工程
    • 431 篇 信息与通信工程
    • 430 篇 机械工程
    • 294 篇 电气工程
    • 287 篇 仪器科学与技术
    • 179 篇 生物工程
    • 159 篇 生物医学工程(可授...
    • 119 篇 电子科学与技术(可...
    • 61 篇 安全科学与工程
    • 58 篇 建筑学
    • 58 篇 化学工程与技术
    • 52 篇 土木工程
    • 49 篇 交通运输工程
    • 40 篇 力学(可授工学、理...
  • 2,065 篇 理学
    • 1,382 篇 物理学
    • 1,198 篇 数学
    • 420 篇 统计学(可授理学、...
    • 238 篇 生物学
    • 54 篇 化学
    • 36 篇 系统科学
  • 263 篇 管理学
    • 180 篇 图书情报与档案管...
    • 89 篇 管理科学与工程(可...
    • 47 篇 工商管理
  • 223 篇 医学
    • 222 篇 临床医学
    • 39 篇 基础医学(可授医学...
  • 205 篇 艺术学
    • 205 篇 设计学(可授艺术学...
  • 45 篇 法学
    • 43 篇 社会学
  • 21 篇 农学
  • 14 篇 教育学
  • 9 篇 经济学
  • 6 篇 军事学

主题

  • 3,412 篇 computer vision
  • 1,216 篇 pattern recognit...
  • 946 篇 cameras
  • 908 篇 conferences
  • 765 篇 computer science
  • 674 篇 image segmentati...
  • 618 篇 layout
  • 598 篇 training
  • 548 篇 shape
  • 518 篇 robustness
  • 451 篇 feature extracti...
  • 448 篇 humans
  • 445 篇 face recognition
  • 405 篇 computational mo...
  • 402 篇 object detection
  • 365 篇 visualization
  • 356 篇 computer archite...
  • 336 篇 application soft...
  • 304 篇 lighting
  • 259 篇 image reconstruc...

机构

  • 41 篇 microsoft resear...
  • 30 篇 department of co...
  • 25 篇 department of co...
  • 23 篇 institute for co...
  • 22 篇 department of co...
  • 22 篇 school of comput...
  • 20 篇 university of sc...
  • 20 篇 swiss fed inst t...
  • 19 篇 tsinghua univers...
  • 19 篇 institute of com...
  • 18 篇 swiss fed inst t...
  • 17 篇 the robotics ins...
  • 17 篇 carnegie mellon ...
  • 17 篇 computer vision ...
  • 17 篇 department of co...
  • 16 篇 institute of inf...
  • 16 篇 school of comput...
  • 15 篇 school of comput...
  • 15 篇 carnegie mellon ...
  • 14 篇 national laborat...

作者

  • 57 篇 timofte radu
  • 25 篇 huang thomas s.
  • 24 篇 van gool luc
  • 23 篇 s.k. nayar
  • 22 篇 nayar shree k.
  • 22 篇 t. kanade
  • 21 篇 jain anil k.
  • 20 篇 luc van gool
  • 19 篇 t.s. huang
  • 18 篇 xiaoou tang
  • 18 篇 murino vittorio
  • 18 篇 horst bischof
  • 17 篇 a.k. jain
  • 17 篇 t. darrell
  • 16 篇 g. healey
  • 16 篇 bowyer kevin w.
  • 16 篇 bischof horst
  • 15 篇 m.j. black
  • 15 篇 li stan z.
  • 15 篇 m. shah

语言

  • 8,932 篇 英文
  • 21 篇 其他
  • 8 篇 中文
  • 1 篇 土耳其文
检索条件"任意字段=IEEE-Computer-Society Conference on Computer Vision and Pattern Recognition Workshops"
8962 条 记 录,以下是361-370 订阅
CSG0: Continual Urban Scene Generation with Zero Forgetting
CSG0: Continual Urban Scene Generation with Zero Forgetting
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Jain, Himalaya Tuan-Hung Vu Perez, Patrick Cord, Matthieu Valeo Ai Paris France Sorbonne Univ Paris France
With the rapid advances in generative adversarial networks (GANs), the visual quality of synthesised scenes keeps improving, including for complex urban scenes with applications to automated driving. We address in thi... 详细信息
来源: 评论
Faster, Lighter, Robuster: A Weakly-Supervised Crowd Analysis Enhancement Network and A Generic Feature Extraction Framework
Faster, Lighter, Robuster: A Weakly-Supervised Crowd Analysi...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Wu, Shaokai Liu, Zhaogeng Pei, Wencheng Hong, Jianbo Li, Zhanshan Jilin Univ Coll Comp Sci & Technol Changchun Peoples R China Jilin Univ Sch Artificial Intelligence Changchun Peoples R China
With bounding box labels needed for training, object detection is viewed unfavorably in terms of crowd analysis, due to the intensive labor for labeling and the unsatisfactory performance in clutters and severe occlus... 详细信息
来源: 评论
Semi-Supervised Few-Shot Learning from A Dependency-Discriminant Perspective
Semi-Supervised Few-Shot Learning from A Dependency-Discrimi...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Hou, Zejiang Kung, Sun-Yuan Princeton Univ Princeton NJ 08544 USA
We study the few-shot learning (FSL) problem, where a model learns to recognize new objects with extremely few labeled training data per category. Most of previous FSL approaches resort to the meta-learning paradigm, ... 详细信息
来源: 评论
Long-term Action Forecasting Using Multi-headed Attention-based Variational Recurrent Neural Networks
Long-term Action Forecasting Using Multi-headed Attention-ba...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Loh, Siyuan Brandon Roy, Debaditya Fernando, Basura ASTAR IHPC SCC Singapore Singapore ASTAR IHPC CFAR Singapore Singapore
Systems developed for predicting both the action and the amount of time someone might take to perform that action need to be aware of the inherent uncertainty in what humans do. Here, we present a novel hybrid generat... 详细信息
来源: 评论
Probabilistic Compositional Embeddings for Multimodal Image Retrieval
Probabilistic Compositional Embeddings for Multimodal Image ...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Neculai, Andrei Chen, Yanbei Akata, Zeynep Univ Tubingen Tubingen Germany MPI Informat Saarbrucken Germany MPI Intelligent Syst Stuttgart Germany
Existing works in image retrieval often consider retrieving images with one or two query inputs, which do not generalize to multiple queries. In this work, we investigate a more challenging scenario for composing mult... 详细信息
来源: 评论
NTIRE 2024 Image Shadow Removal Challenge Report
NTIRE 2024 Image Shadow Removal Challenge Report
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Vasluianu, Florin-Alexandru Seizinger, Tim Wu, Zongwei Zhou, Zhuyun Chen, Cailian Zhou, Han Timofte, Radu Dong, Wei Tian, Yuqiong Chen, Jun Lul, Xin Zhu, Yurui Wang, Xi Li, Dong Xiao, Jie Zhang, Yunpeng Fu, Xueyang Zha, Zheng-Jun Zhang, Zhao Zhao, Suiyi Wang, Bo Luo, Yan Wei, Yanyan Xiaol, Jie Ful, Xueyang Zhal, Zheng-Jun Lu, Xin Zhao, Zhihao Sun, Long Yang, Tingting Pan, Jinshan Tang, Jinhui Dong, Jiangxin Benjdira, Bilel Nassif, Mohammed Koubaa, Anis Elhayek, Ahmed Ali, Anas M. Tokoro, Kyotaro Kawai, Kento Yokoyama, Kaname Seno, Takuya Kondo, Yuki Ukita, Norimichi Li, Chenghua Yang, Bo Wu, Zhiqi Chen, Gao Yu, Yihan Chen, Sixiang Mane, Kai Ye, Tian Zou, Wenbin Lin, Yunlong Xing, Zhaohu Bai, Jinbin Chai, Wenhao Zhu, Lei Maheshwari, Ritik Verma, Rakshank Tekchandanil, Rahul Hambarde, Praful Tazil, Satya Narayan Vipparthi, Santosh Kumar Murala, Subrahmanyam Lee, Jaeho Kim, Seongwan Sharif, S. M. A. Khujaev, Nodirkhuja Tsoy, Roman Gao, Fan Yan, Weidan Shao, Wenze Zhang, Dengyin Chen, Bin Zhang, Siqi Qian, Yanxin Chen, Yuanbin Zhou, Yuanbo Tong, Tong Wei, Rongfeng Sun, Ruiqi Liu, Yue Akalwadi, Nikhil Joshi, Amogh Malagi, Sampada Desai, Chaitra Tabib, Ramesh Ashok Mudenagudi, Uma Murtaza, Ali Khairuddin, Uswah Faudzi, Ahmad'Athif Mohd Dukre, Adinath Deshmukh, Vivek Phutke, Shruti S. Kulkarni, Ashutosh Gonde, Anil Karthik, Arun K. Manasa, N. Priyal, Shri Hari Hao, Wei Yan, Xingzhuo Fu, Minghan Univ Wurzburg Comp Vis Lab IFI & CAIDAS Wurzburg Germany Shanghai Jiao Tong Univ Shanghai Peoples R China McMaster Univ Dept Elect & Comp Engn Hamilton ON Canada Univ Sci & Technol China Hefei Peoples R China Hefei Univ Technol Hefei Peoples R China Nanjing Univ Sci & Technol Nanjing Jiangsu Peoples R China Prince Sultan Univ Robot & Internet Things Lab Riyadh 12435 Saudi Arabia Prince Muqrin Univ Artificial Intelligence Dept Medinah 41311 Saudi Arabia Toyota Technol Inst Intelligent Informat Media Lab Nagoya Japan Nanjing Artificial Intelligence Res IA AiRiA Nanjing Peoples R China Nanjing Normal Univ High Sch Jiangning Campus Nanjing Peoples R China Hong Kong Univ Sci & Technol Guangzhou Guangzhou Peoples R China South China Univ Technol Guangzhou Peoples R China Xiamen Univ Xiamen Peoples R China Natl Univ Singapore Singapore Singapore Univ Washington Seattle WA 98195 USA GEC Ajmer Kiranipura India CVPR Lab IIT Ropar Rupnagar India SCSS Trinity Coll Dublin Dublin Ireland Opt AI Seoul South Korea Nanjing Univ Posts & Telecommun Nanjing Peoples R China Fuzhou Univ Fuzhou Peoples R China Univ Hong Kong Logist & Supply Chain MultiTech R&D Ctr Hong Kong Peoples R China Sun Yat Sen Univ Guangzhou Peoples R China KLE Technol Univ Ctr Excellence Visual Intelligence CEVI Hubballi Karnataka India KLE Technol Univ Sch Elect & Commun Engn Hubballi Karnataka India KLE Technol Univ Sch Comp Sci & Engn Hubballi Karnataka India Univ Teknol Malaysia Malaysia Japan Int Inst Technol MMT Kuala Lumpur Malaysia Univ Teknol Malaysia Ctr Artificial Intelligence & Robot CAIRO Kuala Lumpur Malaysia Shri Guru Gobind Singhji Inst Engn & Technol Nanded India Indian Inst Technol Ropar Comp Vis & Pattern Recognit Lab Rupnagar India Trinity Coll Dublin Sch Comp Sci & Stat CVPR Lab Dublin Ireland Shiv Nadar Univ Sch Engn Chennai Tamil Nadu India Fortinet Inc Sunnyvale CA USA Bosch Investment Ltd Shanghai Peoples R China Univ Saskatchewan Saskatoon
This work reviews the results of the NTIRE 2024 Challenge on Shadow Removal. Building on the last year edition, the current challenge was organized in two tracks, with a track focused on increased fidelity reconstruct... 详细信息
来源: 评论
Signature Detection, Restoration, and Verification: A Novel Chinese Document Signature Forgery Detection Benchmark
Signature Detection, Restoration, and Verification: A Novel ...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Yan, Kaihong Zhang, Ying Tang, Haoran Ren, Chengkai Zhang, Jian Wang, Gaoang Wang, Hongwei Zhejiang Univ Zhejiang Univ Univ Illinois Urbana Champaign Inst Haining 314400 Zhejiang Peoples R China
Offline signature forgery detection has attracted many researchers in recent years. In real situations, signatures should be detected from the signed documents and verified by the forgery detection system. There are m... 详细信息
来源: 评论
Vicinal Counting Networks
Vicinal Counting Networks
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Ranjan, Viresh Minh Hoai SUNY Stony Brook Stony Brook NY 11794 USA VinAI Res Hanoi Vietnam
We tackle the task of Few-Shot Counting. Given an image containing multiple objects of a novel visual category and few exemplar bounding boxes depicting the visual category of interest, we want to count all of the ins... 详细信息
来源: 评论
SPARTAN: Self-supervised Spatiotemporal Transformers Approach to Group Activity recognition
SPARTAN: Self-supervised Spatiotemporal Transformers Approac...
收藏 引用
2023 ieee/CVF conference on computer vision and pattern recognition workshops, CVPRW 2023
作者: Chappa, Naga V. S. Raviteja Nguyen, Pha Nelson, Alexander H. Seo, Han-Seok Li, Xin Dobbs, Page Daniel Luu, Khoa University of Arkansas United States West Virginia University United States
In this paper, we propose a new, simple, and effective Self-supervised Spatio-temporal Transformers (SPARTAN) approach to Group Activity recognition (GAR) using unlabeled video data. Given a video, we create local and... 详细信息
来源: 评论
Cross-dataset Learning for Generalizable Land Use Scene Classification
Cross-dataset Learning for Generalizable Land Use Scene Clas...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Gominski, Dimitri Gouet-Brunet, Valerie Chen, Liming Univ Copenhagen Geog Copenhagen Denmark IGN LaSTIG St Mande France Ecole Cent Lyon LIRIS Ecully France
Few-shot and cross-domain land use scene classification methods propose solutions to classify unseen classes or unseen visual distributions, but are hardly applicable to realworld situations due to restrictive assumpt... 详细信息
来源: 评论