咨询与建议

限定检索结果

文献类型

  • 8,901 篇 会议
  • 43 篇 期刊文献
  • 18 册 图书

馆藏范围

  • 8,961 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 4,560 篇 工学
    • 4,020 篇 计算机科学与技术...
    • 2,178 篇 软件工程
    • 1,241 篇 光学工程
    • 555 篇 控制科学与工程
    • 431 篇 信息与通信工程
    • 430 篇 机械工程
    • 294 篇 电气工程
    • 287 篇 仪器科学与技术
    • 179 篇 生物工程
    • 159 篇 生物医学工程(可授...
    • 119 篇 电子科学与技术(可...
    • 61 篇 安全科学与工程
    • 58 篇 建筑学
    • 58 篇 化学工程与技术
    • 52 篇 土木工程
    • 49 篇 交通运输工程
    • 40 篇 力学(可授工学、理...
  • 2,065 篇 理学
    • 1,382 篇 物理学
    • 1,198 篇 数学
    • 420 篇 统计学(可授理学、...
    • 238 篇 生物学
    • 54 篇 化学
    • 36 篇 系统科学
  • 263 篇 管理学
    • 180 篇 图书情报与档案管...
    • 89 篇 管理科学与工程(可...
    • 47 篇 工商管理
  • 223 篇 医学
    • 222 篇 临床医学
    • 39 篇 基础医学(可授医学...
  • 205 篇 艺术学
    • 205 篇 设计学(可授艺术学...
  • 45 篇 法学
    • 43 篇 社会学
  • 21 篇 农学
  • 14 篇 教育学
  • 9 篇 经济学
  • 6 篇 军事学

主题

  • 3,412 篇 computer vision
  • 1,216 篇 pattern recognit...
  • 946 篇 cameras
  • 908 篇 conferences
  • 765 篇 computer science
  • 674 篇 image segmentati...
  • 618 篇 layout
  • 598 篇 training
  • 548 篇 shape
  • 518 篇 robustness
  • 451 篇 feature extracti...
  • 448 篇 humans
  • 445 篇 face recognition
  • 405 篇 computational mo...
  • 402 篇 object detection
  • 365 篇 visualization
  • 356 篇 computer archite...
  • 336 篇 application soft...
  • 304 篇 lighting
  • 259 篇 image reconstruc...

机构

  • 41 篇 microsoft resear...
  • 30 篇 department of co...
  • 25 篇 department of co...
  • 23 篇 institute for co...
  • 22 篇 department of co...
  • 22 篇 school of comput...
  • 20 篇 university of sc...
  • 20 篇 swiss fed inst t...
  • 19 篇 tsinghua univers...
  • 19 篇 institute of com...
  • 18 篇 swiss fed inst t...
  • 17 篇 the robotics ins...
  • 17 篇 carnegie mellon ...
  • 17 篇 computer vision ...
  • 17 篇 department of co...
  • 16 篇 institute of inf...
  • 16 篇 school of comput...
  • 15 篇 school of comput...
  • 15 篇 carnegie mellon ...
  • 14 篇 national laborat...

作者

  • 57 篇 timofte radu
  • 25 篇 huang thomas s.
  • 24 篇 van gool luc
  • 23 篇 s.k. nayar
  • 22 篇 nayar shree k.
  • 22 篇 t. kanade
  • 21 篇 jain anil k.
  • 20 篇 luc van gool
  • 19 篇 t.s. huang
  • 18 篇 xiaoou tang
  • 18 篇 murino vittorio
  • 18 篇 horst bischof
  • 17 篇 a.k. jain
  • 17 篇 t. darrell
  • 16 篇 g. healey
  • 16 篇 bowyer kevin w.
  • 16 篇 bischof horst
  • 15 篇 m.j. black
  • 15 篇 li stan z.
  • 15 篇 m. shah

语言

  • 8,932 篇 英文
  • 21 篇 其他
  • 8 篇 中文
  • 1 篇 土耳其文
检索条件"任意字段=IEEE-Computer-Society Conference on Computer Vision and Pattern Recognition Workshops"
8962 条 记 录,以下是481-490 订阅
排序:
3DRRDB: Super Resolution of Multiple Remote Sensing Images using 3D Residual in Residual Dense Blocks
3DRRDB: Super Resolution of Multiple Remote Sensing Images u...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Ramzy Ibrahim, Mohamed Benavente, Robert Lumbreras, Felipe Ponsa, Daniel Arab Acad Sci & Technol Comp Engn Dept Alexandria Egypt Univ Autonoma Barcelona Dept Comp Sci Barcelona Spain Comp Vis Ctr Campus UAB Barcelona Spain
The rapid advancement of Deep Convolutional Neural Networks helped in solving many remote sensing problems, especially the problems of super-resolution. However, most state-of-the-art methods focus more on Single Imag... 详细信息
来源: 评论
Hybrid Consistency Training with Prototype Adaptation for Few-Shot Learning
Hybrid Consistency Training with Prototype Adaptation for Fe...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Ye, Meng Lin, Xiao Burachas, Giedrius Divakaran, Ajay Yao, Yi SRI Int 333 Ravenswood Ave Menlo Pk CA 94025 USA
Few-Shot Learning (FSL) aims to improve a model's generalization capability in low data regimes. Recent FSL works have made steady progress via metric learning, meta learning, representation learning, etc. However... 详细信息
来源: 评论
A Closer Look at Blind Super-Resolution: Degradation Models, Baselines, and Performance Upper Bounds
A Closer Look at Blind Super-Resolution: Degradation Models,...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Zhang, Wenlong Shi, Guangyuan Liu, Yihao Dong, Chao Wu, Xiao-Ming HongKong Polytech Univ Hong Kong Peoples R China Chinese Acad Sci Shenzhen Inst Adv Technol Beijing Peoples R China Univ Chinese Acad Sci Beijing Peoples R China Shanghai AI Lab Shanghai Peoples R China
Degradation models play an important role in Blind super-resolution (SR). The classical degradation model, which mainly involves blur degradation, is too simple to simulate real-world scenarios. The recently proposed ... 详细信息
来源: 评论
A Hybrid Network of CNN and Transformer for Lightweight Image Super-Resolution
A Hybrid Network of CNN and Transformer for Lightweight Imag...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Fang, Jinsheng Lin, Hanjiang Chen, Xinyu Zeng, Kun Minnan Normal Univ Zhangzhou Peoples R China Minjiang Univ Fuzhou Fujian Peoples R China
Recently, a number of CNN based methods have made great progress in single image super-resolution. However, these existing architectures commonly build massive number of network layers, bringing high computational com... 详细信息
来源: 评论
Trust Your IMU: Consequences of Ignoring the IMU Drift
Trust Your IMU: Consequences of Ignoring the IMU Drift
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Ornhag, Marcus Valtonen Persson, Patrik Wadenback, Marten Astrom, Kalle Heyden, Anders Lund Univ Ctr Math Sci Lund Sweden Linkoping Univ Dept Elect Engn Linkoping Sweden
In this paper, we argue that modern pre-integration methods for inertial measurement units (IMUs) are accurate enough to ignore the drift for short time intervals. This allows us to consider a simplified camera model,... 详细信息
来源: 评论
Semi-Supervised Hyperspectral Object Detection Challenge Results - PBVS 2022
Semi-Supervised Hyperspectral Object Detection Challenge Res...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Rangnekar, Aneesh Mulhollan, Zachary Vodacek, Anthony Hoffman, Matthew Sappa, Angel Blasch, Erik Yu, Jun Zhang, Liwen Du, Shenshen Chang, Hao Lu, Keda Zhang, Zhong Gao, Fang Yu, Ye Shuang, Feng Wang, Lei Ling, Qiang Shyam, Pranjay Yoon, Kuk-Jin Kim, Kyung-Soo Rochester Inst Technol Rochester NY 14623 USA ESPOL Polytech Univ Guayaquil Ecuador Comp Vision Ctr Campus UAB Barcelona Spain US Air Force Res Lab Rome NY USA
This paper summarizes the top contributions to the first semi-supervised hyperspectral object detection (SSHOD) challenge, which was organized as a part of the Perception Beyond the Visible Spectrum (PBVS) 2022 worksh... 详细信息
来源: 评论
Fast and Memory-Efficient Network Towards Efficient Image Super-Resolution
Fast and Memory-Efficient Network Towards Efficient Image Su...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Du, Zongcai Liu, Ding Liu, Jie Tang, Jie Wu, Gangshan Fu, Lean Nanjing Univ State Key Lab Novel Software Technol Nanjing Peoples R China ByteDance Inc Beijing Peoples R China
Runtime and memory consumption are two important aspects for efficient image super-resolution (EISR) models to be deployed on resource-constrained devices. Recent advances in EISR [16, 32] exploit distillation and agg... 详细信息
来源: 评论
Real-time Hyper-Dimensional Reconfiguration at the Edge using Hardware Accelerators
Real-time Hyper-Dimensional Reconfiguration at the Edge usin...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Kandaswamy, Indhumathi Farkya, Saurabh Daniels, Zachary van der Wal, Gooitzen Raghavan, Aswin Zhang, Yuzheng Hu, Jun Lomnitz, Michael Isnardi, Michael Zhang, David Piacentino, Michael SRI Int Ctr Vis Technol Princeton NJ 08540 USA
In this paper we present Hyper-Dimensional Reconfigurable Analytics at the Tactical Edge (HyDRATE) using low-SWaP embedded hardware that can perform real-time reconfiguration at the edge leveraging non-MAC (free of fl... 详细信息
来源: 评论
Auxiliary Learning for Self-Supervised Video Representation via Similarity-based Knowledge Distillation
Auxiliary Learning for Self-Supervised Video Representation ...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Dadashzadeh, Amirhossein Whone, Alan Mirmehdi, Majid Univ Bristol Bristol Avon England
Despite the outstanding success of self-supervised pretraining methods for video representation learning, they generalise poorly when the unlabeled dataset for pretraining is small or the domain difference between unl... 详细信息
来源: 评论
Strengthening the Transferability of Adversarial Examples Using Advanced Looking Ahead and Self-CutMix
Strengthening the Transferability of Adversarial Examples Us...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Jang, Donggon Son, Sanghyeok Kim, Dae-Shik Korea Adv Inst Sci & Technol KAIST Daejeon South Korea
Deep neural networks (DNNs) are vulnerable to adversarial examples generated by adding malicious noise imperceptible to a human. The adversarial examples successfully fool the models under the white-box setting, but t... 详细信息
来源: 评论