咨询与建议

限定检索结果

文献类型

  • 8,901 篇 会议
  • 43 篇 期刊文献
  • 18 册 图书

馆藏范围

  • 8,961 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 4,560 篇 工学
    • 4,020 篇 计算机科学与技术...
    • 2,178 篇 软件工程
    • 1,241 篇 光学工程
    • 555 篇 控制科学与工程
    • 431 篇 信息与通信工程
    • 430 篇 机械工程
    • 294 篇 电气工程
    • 287 篇 仪器科学与技术
    • 179 篇 生物工程
    • 159 篇 生物医学工程(可授...
    • 119 篇 电子科学与技术(可...
    • 61 篇 安全科学与工程
    • 58 篇 建筑学
    • 58 篇 化学工程与技术
    • 52 篇 土木工程
    • 49 篇 交通运输工程
    • 40 篇 力学(可授工学、理...
  • 2,065 篇 理学
    • 1,382 篇 物理学
    • 1,198 篇 数学
    • 420 篇 统计学(可授理学、...
    • 238 篇 生物学
    • 54 篇 化学
    • 36 篇 系统科学
  • 263 篇 管理学
    • 180 篇 图书情报与档案管...
    • 89 篇 管理科学与工程(可...
    • 47 篇 工商管理
  • 223 篇 医学
    • 222 篇 临床医学
    • 39 篇 基础医学(可授医学...
  • 205 篇 艺术学
    • 205 篇 设计学(可授艺术学...
  • 45 篇 法学
    • 43 篇 社会学
  • 21 篇 农学
  • 14 篇 教育学
  • 9 篇 经济学
  • 6 篇 军事学

主题

  • 3,412 篇 computer vision
  • 1,216 篇 pattern recognit...
  • 946 篇 cameras
  • 908 篇 conferences
  • 765 篇 computer science
  • 674 篇 image segmentati...
  • 618 篇 layout
  • 598 篇 training
  • 548 篇 shape
  • 518 篇 robustness
  • 451 篇 feature extracti...
  • 448 篇 humans
  • 445 篇 face recognition
  • 405 篇 computational mo...
  • 402 篇 object detection
  • 365 篇 visualization
  • 356 篇 computer archite...
  • 336 篇 application soft...
  • 304 篇 lighting
  • 259 篇 image reconstruc...

机构

  • 41 篇 microsoft resear...
  • 30 篇 department of co...
  • 25 篇 department of co...
  • 23 篇 institute for co...
  • 22 篇 department of co...
  • 22 篇 school of comput...
  • 20 篇 university of sc...
  • 20 篇 swiss fed inst t...
  • 19 篇 tsinghua univers...
  • 19 篇 institute of com...
  • 18 篇 swiss fed inst t...
  • 17 篇 the robotics ins...
  • 17 篇 carnegie mellon ...
  • 17 篇 computer vision ...
  • 17 篇 department of co...
  • 16 篇 institute of inf...
  • 16 篇 school of comput...
  • 15 篇 school of comput...
  • 15 篇 carnegie mellon ...
  • 14 篇 national laborat...

作者

  • 57 篇 timofte radu
  • 25 篇 huang thomas s.
  • 24 篇 van gool luc
  • 23 篇 s.k. nayar
  • 22 篇 nayar shree k.
  • 22 篇 t. kanade
  • 21 篇 jain anil k.
  • 20 篇 luc van gool
  • 19 篇 t.s. huang
  • 18 篇 xiaoou tang
  • 18 篇 murino vittorio
  • 18 篇 horst bischof
  • 17 篇 a.k. jain
  • 17 篇 t. darrell
  • 16 篇 g. healey
  • 16 篇 bowyer kevin w.
  • 16 篇 bischof horst
  • 15 篇 m.j. black
  • 15 篇 li stan z.
  • 15 篇 m. shah

语言

  • 8,932 篇 英文
  • 21 篇 其他
  • 8 篇 中文
  • 1 篇 土耳其文
检索条件"任意字段=IEEE-Computer-Society Conference on Computer Vision and Pattern Recognition Workshops"
8962 条 记 录,以下是731-740 订阅
排序:
ALPS: Adaptive Quantization of Deep Neural Networks with GeneraLized PositS
ALPS: Adaptive Quantization of Deep Neural Networks with Gen...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Langroudi, Hamed F. Karia, Vedant Carmichael, Zachariah Zyarah, Abdullah Pandit, Tej Gustafson, John L. Kudithipudi, Dhireesha Univ Texas San Antonio Neuromorph AI Lab San Antonio TX 78249 USA Rochester Inst Technol Rochester NY 14623 USA Natl Univ Singapore Singapore Singapore
In this paper, a new adaptive quantization algorithm for generalized posit format is presented, to optimally represent the dynamic range and distribution of deep neural network parameters. Adaptation is achieved by mi... 详细信息
来源: 评论
Dancing under the stars: video denoising in starlight
Dancing under the stars: video denoising in starlight
收藏 引用
2022 ieee/CVF conference on computer vision and pattern recognition, CVPR 2022
作者: Monakhova, Kristina Richter, Stephan R. Waller, Laura Koltun, Vladlen Uc Berkeley United States Intel Labs
Imaging in low light is extremely challenging due to low photon counts. Using sensitive CMOS cameras, it is currently possible to take videos at night under moonlight (0.05-0.3 lux illumination). In this paper, we dem... 详细信息
来源: 评论
Dressing in Order: Recurrent Person Image Generation for Pose Transfer, Virtual Try-on and Outfit Editing
Dressing in Order: Recurrent Person Image Generation for Pos...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Cui, Aiyu McKee, Daniel Lazebnik, Svetlana Univ Illinois Champaign IL 61820 USA
We propose a flexible person generation framework called Dressing in Order (DiOr), which supports 2D pose transfer, virtual try-on, and several fashion editing tasks. The key to DiOr is a novel recurrent generation pi... 详细信息
来源: 评论
Color Me Good: Branding in the Coloring Style of Movie Posters
Color Me Good: Branding in the Coloring Style of Movie Poste...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Agrawal, Rishabh Sivaprasad, Sarath Pedanekar, Niranjan TCS Res Tata Consultancy Serv Pune 411013 Maharashtra India
Brand logos are often rendered in a different style based on a context such as an event promotion. For example, Warner Bros. uses a different variety of their brand logo for different movies for promotion and aestheti... 详细信息
来源: 评论
Dealing with Missing Modalities in the Visual Question Answer-Difference Prediction Task through Knowledge Distillation
Dealing with Missing Modalities in the Visual Question Answe...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Cho, Jae Won Kim, Dong-Jin Choi, Jinsoo Jung, Yunjae Kweon, In So Korea Adv Inst Sci & Technol Daejeon South Korea
In this work, we address the issues of the missing modalities that have arisen from the Visual Question Answer-Difference prediction task and find a novel method to solve the task at hand. We address the missing modal... 详细信息
来源: 评论
MVFuseNet: Improving End-to-End Object Detection and Motion Forecasting through Multi-View Fusion of LiDAR Data
MVFuseNet: Improving End-to-End Object Detection and Motion ...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Laddha, Ankit Gautam, Shivam Palombo, Stefan Pandey, Shreyash Vallespi-Gonzalez, Carlos Aurora Innovat Mountain View CA 94043 USA
In this work, we propose MVFuseNet, a novel end-to-end method for joint object detection and motion forecasting from a temporal sequence of LiDAR data. Most existing methods operate in a single view by projecting data... 详细信息
来源: 评论
Shot in the Dark: Few-Shot Learning with No Base-Class Labels
Shot in the Dark: Few-Shot Learning with No Base-Class Label...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Chen, Zitian Maji, Subhransu Learned-Miller, Erik Univ Massachusetts Amherst Amherst MA 01003 USA
Few-shot learning aims to build classifiers for new classes from a small number of labeled examples and is commonly facilitated by access to examples from a distinct set of 'base classes'. The difference in da... 详细信息
来源: 评论
Dual Contrastive Learning for Unsupervised Image-to-Image Translation
Dual Contrastive Learning for Unsupervised Image-to-Image Tr...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Han, Junlin Shoeiby, Mehrdad Petersson, Lars Armin, Mohammad Ali DATA61 CSIRO Canberra ACT Australia Australian Natl Univ Canberra ACT Australia
Unsupervised image-to-image translation tasks aim to find a mapping between a source domain X and a target domain Y from unpaired training data. Contrastive learning for Unpaired image-to-image Translation (CUT) yield... 详细信息
来源: 评论
NTIRE 2022 Challenge on Stereo Image Super-Resolution: Methods and Results
NTIRE 2022 Challenge on Stereo Image Super-Resolution: Metho...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Wang, Longguang Guo, Yulan Wang, Yingqian Li, Juncheng Gu, Shuhang Timofte, Radu Chen, Liangyu Chu, Xiaojie Yu, Wenqing Jin, Kai Wei, Zeqiang Guo, Sha Yang, Angulia Zhou, Xiuzhuang Guo, Guodong Dai, Bin Peng, Feiyue Xiao, Huaxin Yan, Shen Liu, Yuxiang Cai, Hanxiao Cao, Pu Nie, Yang Yang, Lu Song, Qing Hu, Xiaotao Xu, Jun Xu, Mai Jing, Junpeng Deng, Xin Xing, Qunliang Qiao, Minglang Guan, Zhenyu Guo, Wenlong Peng, Chenxu Chen, Zan Chen, Junyang Li, Hao Chen, Junbin Li, Weijie Yang, Zhijing Li, Gen Li, Aijin Sun, Lei Zhang, Dafeng Liu, Shizhuo Zhang, Jiangtao Qu, Yanyun Yang, Hao-Hsiang Huang, Zhi-Kai Chen, Wei-Ting Chang, Hua-En Kuo, Sy-Yen Liang, Qiaohui Lin, Jianxin Wang, Yijun Yin, Lianying Zhang, Rongju Zhao, Wei Xiao, Peng Xu, Rongjian Zhang, Zhilu Zuo, Wangmeng Guo, Hansheng Gao, Guangwei Zeng, Tieyong Pi, Huicheng Zhang, Shunli Kim, Joohyeok Kim, HyeonA Park, Eunpil Sim, Jae-Young Zhai, Jucai Zeng, Pengcheng Liu, Yang Ma, Chihao Huang, Yulin Chen, Junying Natl Univ Defense Technol Changsha Peoples R China Chinese Univ Hong Kong Hong Kong Peoples R China Univ Sydney Sydney NSW 2006 Australia Univ Wurzburg Wurzburg Germany Swiss Fed Inst Technol Zurich Switzerland MEGVII Technol Beijing Peoples R China Peking Univ Beijing Peoples R China Bigo Technol Pte Ltd Singapore Singapore Beijing Univ Posts & Telecommun Smart Healthcare Innovat Lab Beijing Peoples R China Beijing Univ Posts & Telecommun Sch Artificial Intelligence Beijing Peoples R China Baidu Res Inst Deep Learning Beijing Peoples R China Natl Univ Defense Technol Coll Syst Engn Changsha Peoples R China Natl Univ Defense Technol Coll Liberal Arts & Sci Changsha Peoples R China Beijing Univ Posts & Telecommun Pattern Recognit & Intelligent Vis Lab Beijing Peoples R China Nankai Univ Coll Comp Sci Tianjin Peoples R China Nankai Univ Sch Stat & Data Sci Tianjin Peoples R China Beihang Univ Beijing Peoples R China Zhejiang Univ Technol Hangzhou Zhejiang Peoples R China Guangdong Univ Technol Guangzhou Guangdong Peoples R China Tencent OVBU Wuhu Peoples R China SRC B Beijing Peoples R China Xiamen Univ Xiamen Peoples R China Natl Taiwan Univ Dept Elect Engn Taipei Taiwan Natl Taiwan Univ Grad Inst Elect Engn Taipei Taiwan Hunan Univ Coll Comp Sci & Elect Engn Changsha Hunan Peoples R China Harbin Inst Technol Harbin Peoples R China Chinese Univ Hong Kong Hong Kong Peoples R China Nanjing Univ Posts & Telecommun Nanjing Peoples R China Ulsan Natl Inst Sci & Technol Dept Elect Engn Ulsan South Korea Ulsan Natl Inst Sci & Technol Grad Sch Artificial Intelligence Ulsan South Korea Beijing Jiaotong Univ Beijing Peoples R China City Univ Hong Kong Hong Kong Peoples R China South China Univ Technol Guangzhou Guangdong Peoples R China
In this paper, we summarize the 1st NTIRE challenge on stereo image super-resolution (restoration of rich details in a pair of low-resolution stereo images) with a focus on new solutions and results. This challenge ha... 详细信息
来源: 评论
Engineering Sketch Generation for computer-Aided Design
Engineering Sketch Generation for Computer-Aided Design
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Willis, Karl D. D. Jayaraman, Pradeep Kumar Lambourne, Joseph G. Chu, Hang Pu, Yewen Autodesk Res Shanghai Peoples R China
Engineering sketches form the 2D basis of parametric computer-Aided Design (CAD), the foremost modeling paradigm for manufactured objects. In this paper we tackle the problem of learning based engineering sketch gener... 详细信息
来源: 评论