咨询与建议

限定检索结果

文献类型

  • 8,901 篇 会议
  • 43 篇 期刊文献
  • 18 册 图书

馆藏范围

  • 8,961 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 4,560 篇 工学
    • 4,020 篇 计算机科学与技术...
    • 2,178 篇 软件工程
    • 1,241 篇 光学工程
    • 555 篇 控制科学与工程
    • 431 篇 信息与通信工程
    • 430 篇 机械工程
    • 294 篇 电气工程
    • 287 篇 仪器科学与技术
    • 179 篇 生物工程
    • 159 篇 生物医学工程(可授...
    • 119 篇 电子科学与技术(可...
    • 61 篇 安全科学与工程
    • 58 篇 建筑学
    • 58 篇 化学工程与技术
    • 52 篇 土木工程
    • 49 篇 交通运输工程
    • 40 篇 力学(可授工学、理...
  • 2,065 篇 理学
    • 1,382 篇 物理学
    • 1,198 篇 数学
    • 420 篇 统计学(可授理学、...
    • 238 篇 生物学
    • 54 篇 化学
    • 36 篇 系统科学
  • 263 篇 管理学
    • 180 篇 图书情报与档案管...
    • 89 篇 管理科学与工程(可...
    • 47 篇 工商管理
  • 223 篇 医学
    • 222 篇 临床医学
    • 39 篇 基础医学(可授医学...
  • 205 篇 艺术学
    • 205 篇 设计学(可授艺术学...
  • 45 篇 法学
    • 43 篇 社会学
  • 21 篇 农学
  • 14 篇 教育学
  • 9 篇 经济学
  • 6 篇 军事学

主题

  • 3,412 篇 computer vision
  • 1,216 篇 pattern recognit...
  • 946 篇 cameras
  • 908 篇 conferences
  • 765 篇 computer science
  • 674 篇 image segmentati...
  • 618 篇 layout
  • 598 篇 training
  • 548 篇 shape
  • 518 篇 robustness
  • 451 篇 feature extracti...
  • 448 篇 humans
  • 445 篇 face recognition
  • 405 篇 computational mo...
  • 402 篇 object detection
  • 365 篇 visualization
  • 356 篇 computer archite...
  • 336 篇 application soft...
  • 304 篇 lighting
  • 259 篇 image reconstruc...

机构

  • 41 篇 microsoft resear...
  • 30 篇 department of co...
  • 25 篇 department of co...
  • 23 篇 institute for co...
  • 22 篇 department of co...
  • 22 篇 school of comput...
  • 20 篇 university of sc...
  • 20 篇 swiss fed inst t...
  • 19 篇 tsinghua univers...
  • 19 篇 institute of com...
  • 18 篇 swiss fed inst t...
  • 17 篇 the robotics ins...
  • 17 篇 carnegie mellon ...
  • 17 篇 computer vision ...
  • 17 篇 department of co...
  • 16 篇 institute of inf...
  • 16 篇 school of comput...
  • 15 篇 school of comput...
  • 15 篇 carnegie mellon ...
  • 14 篇 national laborat...

作者

  • 57 篇 timofte radu
  • 25 篇 huang thomas s.
  • 24 篇 van gool luc
  • 23 篇 s.k. nayar
  • 22 篇 nayar shree k.
  • 22 篇 t. kanade
  • 21 篇 jain anil k.
  • 20 篇 luc van gool
  • 19 篇 t.s. huang
  • 18 篇 xiaoou tang
  • 18 篇 murino vittorio
  • 18 篇 horst bischof
  • 17 篇 a.k. jain
  • 17 篇 t. darrell
  • 16 篇 g. healey
  • 16 篇 bowyer kevin w.
  • 16 篇 bischof horst
  • 15 篇 m.j. black
  • 15 篇 li stan z.
  • 15 篇 m. shah

语言

  • 8,932 篇 英文
  • 21 篇 其他
  • 8 篇 中文
  • 1 篇 土耳其文
检索条件"任意字段=IEEE-Computer-Society Conference on Computer Vision and Pattern Recognition Workshops"
8962 条 记 录,以下是781-790 订阅
排序:
InfoScrub: Towards Attribute Privacy by Targeted Obfuscation
InfoScrub: Towards Attribute Privacy by Targeted Obfuscation
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Wang, Hui-Po Orekondy, Tribhuvanesh Fritz, Mario CISPA Helmholtz Ctr Informat Secur Saarbrucken Germany Max Planck Inst Informat Saarland Informat Campus Saarbrucken Germany
Personal photos of individuals when shared online, apart from exhibiting a myriad of memorable details, also reveals a wide range of private information and potentially entails privacy risks (e.g., online harassment, ... 详细信息
来源: 评论
Combining Magnification and Measurement for Non-Contact Cardiac Monitoring
Combining Magnification and Measurement for Non-Contact Card...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Nowara, Ewa M. McDuff, Daniel Veeraraghavan, Ashok Rice Univ Houston TX 77251 USA Microsoft Res Redmond WA USA
Deep learning approaches currently achieve the state-of-the-art results on camera-based vital signs measurement. One of the main challenges with using neural models for these applications is the lack of sufficiently l... 详细信息
来源: 评论
Boosting Adversarial Robustness using Feature Level Stochastic Smoothing
Boosting Adversarial Robustness using Feature Level Stochast...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Addepalli, Sravanti Jain, Samyak Sriramanan, Gaurang Babu, R. Venkatesh Indian Inst Sci Video Analyt Lab Dept Computat & Data Sci Bangalore Karnataka India
Advances in adversarial defenses have led to a significant improvement in the robustness of Deep Neural Networks. However, the robust accuracy of present state-of-the-art defenses is far from the requirements in criti... 详细信息
来源: 评论
CNN-based morphological decomposition of X-ray images for details and defects contrast enhancement
CNN-based morphological decomposition of X-ray images for de...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Madmad, Tahani Delinte, Nicolas De Vleeschouwer, Christophe UCLouvain ICTEAM Louvain La Neuve Belgium
This paper introduces a new learning based framework for X-ray images that relies on a morphological decomposition of the signal into two main components, separating images into local textures and piecewise smooth (ca... 详细信息
来源: 评论
Improved Noise2Noise Denoising with Limited Data
Improved Noise2Noise Denoising with Limited Data
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Calvarons, Adria Font Tech Univ Munich Munich Germany
Deep learning methods have proven to be very effective for the task of image denoising even when clean reference images are not available. In particular, Noise2Noise, which requires pairs of noisy images during the tr... 详细信息
来源: 评论
All You Can Embed: Natural Language based Vehicle Retrieval with Spatio-Temporal Transformers
All You Can Embed: Natural Language based Vehicle Retrieval ...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Scribano, Carmelo Sapienza, Davide Franchini, Giorgia Verucchi, Micaela Bertogna, Marko Univ Modena & Reggio Emilia Modena Italy Univ Ferrara Ferrara Italy Univ Parma Parma Italy
Combining Natural Language with vision represents a unique and interesting challenge in the domain of Artificial Intelligence. The AI City Challenge Track 5 for Natural Language-Based Vehicle Retrieval focuses on the ... 详细信息
来源: 评论
Localized Triplet Loss for Fine-grained Fashion Image Retrieval
Localized Triplet Loss for Fine-grained Fashion Image Retrie...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: D'Innocente, Antonio Garg, Nikhil Zhang, Yuan Bazzani, Loris Donoser, Michael Sapienza Univ Rome Rome Italy Amazon Munich Germany Amazon Seattle WA USA
Fashion retrieval methods aim at learning a clothing-specific embedding space where images are ranked based on their global visual similarity with a given query. However, global embeddings struggle to capture localize... 详细信息
来源: 评论
Differentiable Rendering-based Pose-Conditioned Human Image Generation
Differentiable Rendering-based Pose-Conditioned Human Image ...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Horiuchi, Yusuke Simo-Serra, Edgar Iizuka, Satoshi Ishikawa, Hiroshi Waseda Univ Tokyo Japan Univ Tsukuba Tsukuba Ibaraki Japan
Conditional human image generation, or generation of human images with specified pose based on one or more reference images, is an inherently ill-defined problem, as there can be multiple plausible appearance for part... 详细信息
来源: 评论
Essentials for Class Incremental Learning
Essentials for Class Incremental Learning
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Mittal, Sudhanshu Galesso, Silvio Brox, Thomas Univ Freiburg Freiburg Germany
Contemporary neural networks are limited in their ability to learn from evolving streams of training data. When trained sequentially on new or evolving tasks, their accuracy drops sharply, making them unsuitable for m... 详细信息
来源: 评论
A Simple Baseline for Fast and Accurate Depth Estimation on Mobile Devices
A Simple Baseline for Fast and Accurate Depth Estimation on ...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Zhang, Ziyu Wang, Yicheng Huang, Zilong Luo, Guozhong Yu, Gang Fu, Bin Tencent GY Lab Shenzhen Peoples R China
In this paper, we propose a simple but effective encoder-decoder based network for fast and accurate depth estimation on mobile devices. Unlike other depth estimation methods using heavy context modeling modules, the ... 详细信息
来源: 评论