咨询与建议

限定检索结果

文献类型

  • 8,905 篇 会议
  • 43 篇 期刊文献
  • 18 册 图书

馆藏范围

  • 8,965 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 4,564 篇 工学
    • 4,024 篇 计算机科学与技术...
    • 2,182 篇 软件工程
    • 1,241 篇 光学工程
    • 558 篇 控制科学与工程
    • 433 篇 信息与通信工程
    • 430 篇 机械工程
    • 294 篇 电气工程
    • 288 篇 仪器科学与技术
    • 179 篇 生物工程
    • 159 篇 生物医学工程(可授...
    • 119 篇 电子科学与技术(可...
    • 64 篇 安全科学与工程
    • 58 篇 建筑学
    • 58 篇 化学工程与技术
    • 52 篇 土木工程
    • 52 篇 交通运输工程
    • 40 篇 力学(可授工学、理...
  • 2,066 篇 理学
    • 1,382 篇 物理学
    • 1,198 篇 数学
    • 420 篇 统计学(可授理学、...
    • 238 篇 生物学
    • 55 篇 化学
    • 36 篇 系统科学
  • 266 篇 管理学
    • 182 篇 图书情报与档案管...
    • 92 篇 管理科学与工程(可...
    • 47 篇 工商管理
  • 223 篇 医学
    • 222 篇 临床医学
    • 39 篇 基础医学(可授医学...
  • 205 篇 艺术学
    • 205 篇 设计学(可授艺术学...
  • 45 篇 法学
    • 43 篇 社会学
  • 21 篇 农学
  • 14 篇 教育学
  • 9 篇 经济学
  • 6 篇 军事学

主题

  • 3,414 篇 computer vision
  • 1,216 篇 pattern recognit...
  • 946 篇 cameras
  • 908 篇 conferences
  • 765 篇 computer science
  • 674 篇 image segmentati...
  • 618 篇 layout
  • 598 篇 training
  • 548 篇 shape
  • 518 篇 robustness
  • 451 篇 feature extracti...
  • 448 篇 humans
  • 445 篇 face recognition
  • 405 篇 computational mo...
  • 402 篇 object detection
  • 365 篇 visualization
  • 356 篇 computer archite...
  • 336 篇 application soft...
  • 304 篇 lighting
  • 257 篇 image reconstruc...

机构

  • 41 篇 microsoft resear...
  • 30 篇 department of co...
  • 25 篇 department of co...
  • 23 篇 institute for co...
  • 22 篇 department of co...
  • 22 篇 school of comput...
  • 20 篇 university of sc...
  • 20 篇 swiss fed inst t...
  • 19 篇 tsinghua univers...
  • 19 篇 institute of com...
  • 18 篇 swiss fed inst t...
  • 17 篇 the robotics ins...
  • 17 篇 carnegie mellon ...
  • 17 篇 computer vision ...
  • 17 篇 department of co...
  • 16 篇 institute of inf...
  • 16 篇 school of comput...
  • 15 篇 school of comput...
  • 15 篇 carnegie mellon ...
  • 14 篇 national laborat...

作者

  • 57 篇 timofte radu
  • 25 篇 huang thomas s.
  • 24 篇 van gool luc
  • 23 篇 s.k. nayar
  • 22 篇 nayar shree k.
  • 22 篇 t. kanade
  • 21 篇 jain anil k.
  • 20 篇 luc van gool
  • 19 篇 t.s. huang
  • 18 篇 xiaoou tang
  • 18 篇 murino vittorio
  • 18 篇 horst bischof
  • 17 篇 a.k. jain
  • 17 篇 t. darrell
  • 16 篇 g. healey
  • 16 篇 bowyer kevin w.
  • 16 篇 bischof horst
  • 15 篇 m.j. black
  • 15 篇 li stan z.
  • 15 篇 m. shah

语言

  • 8,904 篇 英文
  • 53 篇 其他
  • 8 篇 中文
  • 1 篇 土耳其文
检索条件"任意字段=IEEE-Computer-Society Conference on Computer Vision and Pattern Recognition Workshops"
8966 条 记 录,以下是801-810 订阅
Deep Fusion of Appearance and Frame Differencing for Motion Segmentation
Deep Fusion of Appearance and Frame Differencing for Motion ...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Ellenfeld, Marc Moosbauer, Sebastian Cardenes, Ruben Klauck, Ulrich Teutsch, Michael Hensoldt Optron GmbH Oberkochen Germany Hensoldt Analyt GmbH Oberkochen Germany Aalen Univ Appl Sci Aalen Germany Univ Western Cape Cape Town South Africa
Motion segmentation is a technique to detect and localize class-agnostic motion in videos. This motion is assumed to be relative to a stationary background and usually originates from objects such as vehicles or human... 详细信息
来源: 评论
À-la-carte Prompt Tuning (APT): Combining Distinct Data Via Composable Prompting
À-la-carte Prompt Tuning (APT): Combining Distinct Data Via...
收藏 引用
2023 ieee/CVF conference on computer vision and pattern recognition, CVPR 2023
作者: Bowman, Benjamin Achille, Alessandro Zancato, Luca Trager, Matthew Perera, Pramuditha Paolini, Giovanni Soatto, Stefano Aws Ai Labs United States Ucla United States
We introduce À-la-carte Prompt Tuning (APT), a transformer-based scheme to tune prompts on distinct data so that they can be arbitrarily composed at inference time. The individual prompts can be trained in isolat... 详细信息
来源: 评论
Renofeation: A Simple Transfer Learning Method for Improved Adversarial Robustness
Renofeation: A Simple Transfer Learning Method for Improved ...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Chin, Ting-Wu Zhang, Cha Marculescu, Diana Carnegie Mellon Univ Pittsburgh PA 15213 USA Microsoft Cloud & AI Redmond WA USA Univ Texas Austin Austin TX 78712 USA
Fine-tuning through knowledge transfer from a pre-trained model on a large-scale dataset is a widely spread approach to effectively build models on small-scale datasets. In this work, we show that a recent adversarial... 详细信息
来源: 评论
Self-Supervised Learning of Remote Sensing Scene Representations Using Contrastive Multiview Coding
Self-Supervised Learning of Remote Sensing Scene Representat...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Stojnic, Vladan Risojevic, Vladimir Univ Banja Luka Fac Elect Engn Banja Luka Bosnia & Herceg
In recent years self-supervised learning has emerged as a promising candidate for unsupervised representation learning. In the visual domain its applications are mostly studied in the context of images of natural scen... 详细信息
来源: 评论
Evaluating the Integration of Morph Attack Detection in Automated Face recognition Systems
Evaluating the Integration of Morph Attack Detection in Auto...
收藏 引用
ieee computer society conference on computer vision and pattern recognition workshops (CVPRW)
作者: Andrea Panzino Simone Maurizio La Cava Giulia Orrù Gian Luca Marcialis University of Cagliari Cagliari Italy
Due to the possibility of automatically verifying an individual’s identity by comparing his/her face with that present in a personal identification document, systems providing identification must be equipped with dig... 详细信息
来源: 评论
Box-Level Tube Tracking and Refinement for Vehicles Anomaly Detection
Box-Level Tube Tracking and Refinement for Vehicles Anomaly ...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Wu, Jie Wang, Xionghui Xiao, Xuefeng Wang, Yitong ByteDance Inc Beijing Peoples R China
Traffic Anomaly detection is an essential computer vision task and plays a critical role in video structure analysis and urban traffic analysis. In this paper, we propose a box-level tracking and refinement algorithm ... 详细信息
来源: 评论
Beyond VQA: Generating Multi-word Answers and Rationales to Visual Questions
Beyond VQA: Generating Multi-word Answers and Rationales to ...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Dua, Radhika Kancheti, Sai Srinivas Balasubramanian, Vineeth N. Indian Inst Technol Hyderabad Hyderabad India
Visual Question Answering is a multi-modal task that aims to measure high-level visual understanding. Contemporary VQA models are restrictive in the sense that answers are obtained via classification over a limited vo... 详细信息
来源: 评论
Guidance Network with Staged Learning for Image enhancement
Guidance Network with Staged Learning for Image enhancement
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Liang, Luming Zharkov, Ilya Amjadi, Faezeh Joze, Hamid Reza Vaezi Pradeep, Vivek Microsoft One Microsoft Way Redmond WA 98052 USA
Many important yet not fully resolved problems in computational photography and image enhancement, e.g. generating well-lit images from their low-light counterparts or producing RGB images from their RAW camera inputs... 详细信息
来源: 评论
Table Tennis Stroke recognition Using Two-Dimensional Human Pose Estimation
Table Tennis Stroke Recognition Using Two-Dimensional Human ...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Kulkarni, Kaustubh Milind Shenoy, Sucheth
We introduce a novel method for collecting table tennis video data and perform stroke detection and classification. A diverse dataset containing video data of 11 basic strokes obtained from 14 professional table tenni... 详细信息
来源: 评论
Distill on the Go: Online knowledge distillation in self-supervised learning
Distill on the Go: Online knowledge distillation in self-sup...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Bhat, Prashant Arani, Elahe Zonooz, Bahram NavInfo Europe Adv Res Lab Eindhoven Netherlands
Self-supervised learning solves pretext prediction tasks that do not require annotations to learn feature representations. For vision tasks, pretext tasks such as predicting rotation, solving jigsaw are solely created... 详细信息
来源: 评论