咨询与建议

限定检索结果

文献类型

  • 4,676 篇 会议
  • 2,928 篇 期刊文献
  • 156 册 图书
  • 89 篇 学位论文
  • 2 篇 科技报告
  • 1 篇 专利

馆藏范围

  • 7,854 篇 电子文献
  • 5 种 纸本馆藏

日期分布

学科分类号

  • 5,909 篇 工学
    • 2,835 篇 计算机科学与技术...
    • 1,674 篇 测绘科学与技术
    • 1,405 篇 电气工程
    • 1,335 篇 软件工程
    • 977 篇 信息与通信工程
    • 661 篇 控制科学与工程
    • 650 篇 光学工程
    • 616 篇 环境科学与工程(可...
    • 545 篇 仪器科学与技术
    • 281 篇 机械工程
    • 254 篇 电子科学与技术(可...
    • 243 篇 航空宇航科学与技...
    • 202 篇 土木工程
    • 201 篇 建筑学
    • 164 篇 地质资源与地质工...
    • 143 篇 生物工程
    • 126 篇 化学工程与技术
  • 3,008 篇 理学
    • 1,246 篇 物理学
    • 816 篇 地球物理学
    • 634 篇 数学
    • 247 篇 地理学
    • 223 篇 生物学
    • 218 篇 统计学(可授理学、...
    • 189 篇 化学
    • 122 篇 大气科学
  • 1,471 篇 医学
    • 1,435 篇 临床医学
  • 563 篇 管理学
    • 306 篇 图书情报与档案管...
    • 261 篇 管理科学与工程(可...
  • 414 篇 农学
    • 270 篇 农业资源与环境
    • 116 篇 作物学
  • 48 篇 艺术学
  • 34 篇 军事学
  • 28 篇 法学
  • 18 篇 经济学
  • 13 篇 教育学
  • 9 篇 历史学
  • 5 篇 文学

主题

  • 1,725 篇 remote sensing
  • 860 篇 pattern recognit...
  • 667 篇 image processing
  • 441 篇 feature extracti...
  • 412 篇 image segmentati...
  • 266 篇 deep learning
  • 197 篇 image analysis
  • 194 篇 object detection
  • 182 篇 synthetic apertu...
  • 172 篇 image classifica...
  • 164 篇 satellites
  • 156 篇 image recognitio...
  • 139 篇 data mining
  • 137 篇 image fusion
  • 136 篇 neural networks
  • 117 篇 machine learning
  • 112 篇 image edge detec...
  • 111 篇 classification
  • 110 篇 remote sensing i...
  • 107 篇 spatial resoluti...

机构

  • 72 篇 wuhan univ sch r...
  • 35 篇 wuhan univ state...
  • 34 篇 univ chinese aca...
  • 32 篇 武汉大学
  • 30 篇 成都理工大学
  • 25 篇 中国科学院大学
  • 23 篇 school of remote...
  • 22 篇 chinese acad sci...
  • 21 篇 state key labora...
  • 20 篇 school of remote...
  • 20 篇 beijing univ che...
  • 19 篇 中国地质大学
  • 19 篇 chinese acad sci...
  • 18 篇 mississippi stat...
  • 17 篇 huazhong univ sc...
  • 17 篇 chinese acad sci...
  • 15 篇 institute of ima...
  • 15 篇 national laborat...
  • 15 篇 中国矿业大学
  • 14 篇 beijing inst tec...

作者

  • 26 篇 li wei
  • 25 篇 du qian
  • 18 篇 fang tao
  • 18 篇 schindler konrad
  • 18 篇 tian jinwen
  • 17 篇 pan chunhong
  • 17 篇 jiao licheng
  • 17 篇 zhang liangpei
  • 17 篇 yang jie
  • 14 篇 zhang tianxu
  • 14 篇 zhang bing
  • 14 篇 cao zhiguo
  • 14 篇 huo hong
  • 13 篇 li deren
  • 13 篇 zhang yongjun
  • 12 篇 zhong yanfei
  • 12 篇 ding mingyue
  • 12 篇 qian du
  • 12 篇 zhang jianqing
  • 11 篇 chen zhong

语言

  • 6,634 篇 英文
  • 889 篇 中文
  • 317 篇 其他
  • 6 篇 法文
  • 5 篇 俄文
  • 3 篇 土耳其文
  • 1 篇 德文
检索条件"任意字段=Image Processing and Pattern Recognition in Remote Sensing"
7855 条 记 录,以下是11-20 订阅
排序:
Earth remote sensing and Geographic Information Systems
收藏 引用
pattern recognition AND image ANALYSIS 2023年 第4期33卷 1129-1141页
作者: Soifer, V. A. Sergeev, V. V. Kopenkov, V. N. Chernov, A. V. Russian Acad Sci Image Proc Syst Inst Fed Sci Res Ctr Crystallog & Photon Samara 443001 Russia Samara Univ Samara 443080 Russia
The article examines the role and place of Earth remote sensing (ERS) in geographic information systems. The stages of development of remote sensing and geoinformatics are given, as well as a brief overview of Russian... 详细信息
来源: 评论
Diffusion model for multi-scale ship object detection and recognition in remote sensing images
收藏 引用
SIGNAL image AND VIDEO processing 2025年 第1期19卷 1-13页
作者: Chen, Lei Wang, Bin Liu, Ying Zhao, Shuang Guan, Qinghe Li, Guandian Changchun Univ Sci & Technol Coll Elect & Informat Engn Nanhu St Changchun 130022 Jilin Peoples R China
Ship object detection and recognition in remote sensing images (RSIs) is a challenging task due to the multi-scale and complex background characteristics of ship objects. Currently, convolution-based methods cannot ad... 详细信息
来源: 评论
Fast Projected Fuzzy Clustering With Anchor Guidance for Multimodal remote sensing imagery
收藏 引用
IEEE TRANSACTIONS ON image processing 2024年 33卷 4640-4653页
作者: Zhang, Yongshan Yan, Shuaikang Zhang, Lefei Du, Bo China Univ Geosci Sch Comp Sci Wuhan 430074 Peoples R China Wuhan Univ Sch Comp Sci Wuhan 430072 Peoples R China
Multimodal remote sensing image recognition is a popular research topic in the field of remote sensing. This recognition task is mostly solved by supervised learning methods that heavily rely on manually labeled data.... 详细信息
来源: 评论
Equivariant Attention Graph Capsule Network for remote sensing Scene recognition
收藏 引用
IEEE GEOSCIENCE AND remote sensing LETTERS 2025年 22卷
作者: Bian, Xiaoyong Chen, Xi Yu, Guorong Du, Qian Wuhan Univ Sci & Technol Sch Comp Sci Wuhan 430074 Peoples R China Mississippi State Univ Dept Elect & Comp Engn Starkville MS 39762 USA
In order to effectively exploit foreground object structures in remote sensing scene recognition, it is crucial to hierarchically parse foreground objects and learn invariant feature representation by adding an equiva... 详细信息
来源: 评论
Towards constructing a DOE-based practical optical neural system for ship recognition in remote sensing images
收藏 引用
SIGNAL processing 2024年 221卷
作者: Li, Yanbing Li, Shaochong Li, Tao Wang, Guoqing Liu, Xun Yang, Wei Liu, Yuan'an Beijing Univ Posts & Telecommun Sch Elect Engn Beijing 100876 Peoples R China Univ Elect Sci & Technol China Sch Comp Sci & Engn Chengdu 100094 Peoples R China Beijing Inst Space Mech & Elect Dept Imaging Technol Beijing 611731 Peoples R China
The optical neural network system based on the 4f system (4f-ONN) is a feasible solution for on -orbit real-time target detection and recognition on remote sensing images, as it can directly modulate and encode the tw... 详细信息
来源: 评论
RSID: A remote sensing image Dehazing Network  6th
RSID: A Remote Sensing Image Dehazing Network
收藏 引用
6th Chinese Conference on pattern recognition and Computer Vision (PRCV)
作者: Li, Yuan Zhao, Yafeng Northeast Forestry Univ 26 Hexing Rd Harbin 150036 Heilongjiang Peoples R China
Hazy images often lead to problems such as loss of image details and dull colors, which significantly affects the information extraction of remote sensing images, so it is necessary to research image dehazing. In the ... 详细信息
来源: 评论
RETRACTION: Application of motion trajectory recognition based on remote sensing image optical processing in optimizing swimming training schemes
收藏 引用
OPTICAL AND QUANTUM ELECTRONICS 2024年 第10期56卷 1-1页
作者: Jiang, Wei Jiangsu Univ Sports Dept Zhenjiang 212013 Jiangsu Peoples R China
来源: 评论
Rethinking high-resolution remote sensing image segmentation not limited to technology: a review of segmentation methods and outlook on technical interpretability
收藏 引用
INTERNATIONAL JOURNAL OF remote sensing 2024年 第11期45卷 3689-3716页
作者: Chong, Qianpeng Ni, Mengying Huang, Jianjun Wei, Guangyi Li, Ziyi Xu, Jindong Yantai Univ Sch Comp & Control Engn 32 Qingquan Rd Yantai Peoples R China
The intelligent segmentation of high-resolution remote sensing (HRS) image, also called as dense prediction task for HRS image, has been and will continue to be important research in the remote sensing community. In r... 详细信息
来源: 评论
A Fusion Method Incorporating Dual-Attention Mechanism and Transfer Learning Into UNet plus plus for remote sensing image Coastline Extraction
收藏 引用
IEEE ACCESS 2025年 13卷 11320-11331页
作者: Song, Yanru Xue, Bai Meng, Yueyue Qin, Xiang Li, Yixiao Liu, Qi China Aero Geophys Survey & Remote Sensing Ctr Nat Beijing 100083 Peoples R China MNR Land Satellite Remote Sensing Applicat Ctr Beijing 100048 Peoples R China
The segmentation of land and sea in remote sensing imagery is of great significance for coastline extraction and dynamic monitoring. Traditional coastline recognition and extraction methods based on spectral features ... 详细信息
来源: 评论
Unveiling decision-making in remote sensing with deep learning interpretability  12
Unveiling decision-making in remote sensing with deep learni...
收藏 引用
SPIE 12th International Symposium on Multispectral image processing and pattern recognition, MIPPR 2023
作者: Tian, Zejie School of Information and Communication Engineering Communication University of China Beijing China
Deep neural networks have emerged as the predominant technical approach for remote sensing image interpretation and processing, surpassing traditional methods in various tasks such as target extraction, classification... 详细信息
来源: 评论