咨询与建议

限定检索结果

文献类型

  • 4,688 篇 会议
  • 2,949 篇 期刊文献
  • 157 册 图书
  • 84 篇 学位论文
  • 1 篇 专利

馆藏范围

  • 7,881 篇 电子文献
  • 5 种 纸本馆藏

日期分布

学科分类号

  • 5,941 篇 工学
    • 2,852 篇 计算机科学与技术...
    • 1,676 篇 测绘科学与技术
    • 1,423 篇 电气工程
    • 1,343 篇 软件工程
    • 994 篇 信息与通信工程
    • 668 篇 控制科学与工程
    • 647 篇 光学工程
    • 618 篇 环境科学与工程(可...
    • 551 篇 仪器科学与技术
    • 283 篇 机械工程
    • 263 篇 电子科学与技术(可...
    • 244 篇 航空宇航科学与技...
    • 199 篇 土木工程
    • 198 篇 建筑学
    • 164 篇 地质资源与地质工...
    • 143 篇 生物工程
    • 127 篇 化学工程与技术
  • 3,025 篇 理学
    • 1,254 篇 物理学
    • 819 篇 地球物理学
    • 644 篇 数学
    • 248 篇 地理学
    • 226 篇 生物学
    • 217 篇 统计学(可授理学、...
    • 194 篇 化学
    • 122 篇 大气科学
  • 1,477 篇 医学
    • 1,440 篇 临床医学
  • 568 篇 管理学
    • 307 篇 图书情报与档案管...
    • 264 篇 管理科学与工程(可...
  • 416 篇 农学
    • 271 篇 农业资源与环境
    • 116 篇 作物学
  • 50 篇 艺术学
  • 33 篇 军事学
  • 28 篇 法学
  • 18 篇 经济学
  • 13 篇 教育学
  • 9 篇 历史学
  • 5 篇 文学

主题

  • 1,728 篇 remote sensing
  • 859 篇 pattern recognit...
  • 668 篇 image processing
  • 442 篇 feature extracti...
  • 416 篇 image segmentati...
  • 269 篇 deep learning
  • 197 篇 image analysis
  • 195 篇 object detection
  • 183 篇 synthetic apertu...
  • 171 篇 image classifica...
  • 163 篇 satellites
  • 158 篇 image recognitio...
  • 140 篇 data mining
  • 137 篇 image fusion
  • 136 篇 neural networks
  • 116 篇 machine learning
  • 112 篇 image edge detec...
  • 111 篇 classification
  • 110 篇 remote sensing i...
  • 107 篇 spatial resoluti...

机构

  • 72 篇 wuhan univ sch r...
  • 35 篇 wuhan univ state...
  • 34 篇 univ chinese aca...
  • 32 篇 武汉大学
  • 30 篇 成都理工大学
  • 25 篇 中国科学院大学
  • 24 篇 school of remote...
  • 22 篇 chinese acad sci...
  • 21 篇 state key labora...
  • 20 篇 school of remote...
  • 20 篇 beijing univ che...
  • 19 篇 中国地质大学
  • 19 篇 chinese acad sci...
  • 18 篇 institute of ima...
  • 18 篇 mississippi stat...
  • 17 篇 huazhong univ sc...
  • 17 篇 chinese acad sci...
  • 15 篇 beijing inst tec...
  • 15 篇 national laborat...
  • 15 篇 中国矿业大学

作者

  • 26 篇 li wei
  • 25 篇 du qian
  • 21 篇 yang jie
  • 18 篇 fang tao
  • 18 篇 schindler konrad
  • 18 篇 tian jinwen
  • 17 篇 pan chunhong
  • 17 篇 jiao licheng
  • 16 篇 zhang liangpei
  • 14 篇 zhang tianxu
  • 14 篇 huo hong
  • 13 篇 li deren
  • 13 篇 zhang bing
  • 13 篇 cao zhiguo
  • 13 篇 zhang yongjun
  • 12 篇 zhong yanfei
  • 12 篇 ding mingyue
  • 12 篇 qian du
  • 12 篇 wang wei
  • 12 篇 zhang jianqing

语言

  • 6,564 篇 英文
  • 900 篇 中文
  • 411 篇 其他
  • 6 篇 法文
  • 5 篇 俄文
  • 3 篇 土耳其文
  • 1 篇 德文
检索条件"任意字段=Image Processing and Pattern Recognition in Remote Sensing"
7882 条 记 录,以下是51-60 订阅
Recent Advances in Deep-Learning-Based SAR image Target Detection and recognition
收藏 引用
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND remote sensing 2025年 18卷 6884-6915页
作者: Lang, Ping Fu, Xiongjun Dong, Jian Yang, Huizhang Yin, Junjun Yang, Jian Martorella, Marco Tsinghua Univ Dept Elect Engn Beijing 100084 Peoples R China Beijing Inst Technol Sch Integrated Circuits & Elect Beijing 100081 Peoples R China Nanjing Univ Sci & Technol Sch Elect & Opt Engn Nanjing 210094 Peoples R China Univ Sci & Technol Beijing Sch Comp & Commun Engn Beijing 100083 Peoples R China Univ Pisa Dept Informat Engn I-56127 Pisa Italy
Synthetic aperture radar (SAR) image target detection and recognition (SAR-TDR) tasks have become research hot spots in the remote sensing application. These targets include ships, vehicles, aircraft, oil tanks, bridg... 详细信息
来源: 评论
Aircraft Target Detection in remote sensing images Based on Improved YOLOv7-Tiny Network
收藏 引用
IEEE ACCESS 2025年 13卷 48904-48922页
作者: Zhu, Ruizhe Jin, Hai Han, Yonghua He, Qiyang Mu, Haibo Zhejiang Sci Tech Univ Sch Informat Sci & Engn Hangzhou 310018 Peoples R China Hangzhou Hikvis Digital Technol Co Ltd Hangzhou 310018 Peoples R China
To address the challenges posed by complex backgrounds and target scale variations in remote sensing aircraft detection, we propose an improved YOLOv7-tiny network designed to boost both detection accuracy and the mod... 详细信息
来源: 评论
Overview of remote sensing image fusion based on deep learning  12
Overview of remote sensing image fusion based on deep learni...
收藏 引用
SPIE 12th International Symposium on Multispectral image processing and pattern recognition, MIPPR 2023
作者: Wang, Qian Southwest Forestry University 300 Bailong Temple Kunming650024 China
With the widespread application and rapid development of remote sensing technology, the quality requirements for remote sensing images are gradually improving. Currently, relying solely on one sensor is difficult to e... 详细信息
来源: 评论
FDA-FFNet: A Feature-Distance Attention-Based Change Detection Network for remote sensing image
收藏 引用
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND remote sensing 2024年 17卷 2224-2233页
作者: Peng, Wenguang Shi, Wenzhong Zhang, Min Wang, Lukang Wuhan Univ Sch Remote Sensing & Informat Engn Wuhan 430079 Peoples R China Hong Kong Polytech Univ Smart Cities Res Inst Hong Kong Peoples R China Hong Kong Polytech Univ Dept Land Surveying & Geoinformat Hong Kong Peoples R China China Univ Min & Technol Sch Environm & Spatial Informat Xuzhou 221116 Peoples R China
Convolutional neural networks have demonstrated remarkable capability in extracting deep semantic features from images, leading to significant advancements in various image processing tasks. This success has also open... 详细信息
来源: 评论
remote sensing image super-resolution reconstruction using depth-dense residual and sub-pixel convolutional model
Remote sensing image super-resolution reconstruction using d...
收藏 引用
2024 International Conference on image, Signal processing, and pattern recognition, ISPP 2024
作者: Liu, Haoguang Fu, Yuwen Wang, Zhoujie Chinese Flight Test Establishment Xian China
Existing super-resolution reconstruction algorithms for remote sensing images often struggle to fully extract and utilize features in complex scenes, and the reconstruction results are not optimal due to the influence... 详细信息
来源: 评论
RCSFN: A remote sensing image scene classification and recognition network based on rectangle convolutional self attention fusion
收藏 引用
SIGNAL image AND VIDEO processing 2024年 第12期18卷 8739-8756页
作者: Hou, Jingjin Zhou, Houkui Yu, Huimin Hu, Haoji Zhejiang A&F Univ Sch Math & Comp Sci Hangzhou 311300 Peoples R China Zhejiang Prov Key Lab Forestry Intelligent Monitor Hangzhou 311300 Peoples R China Zhejiang Univ Coll Informat Sci & Elect Engn Hangzhou 310027 Peoples R China State Key Lab CAD & CG Hangzhou 310027 Peoples R China
remote sensing scene classification is a critical task in the processing and analysis of remote sensing images. Traditional methods typically use standard convolutional kernels to extract feature information. Although... 详细信息
来源: 评论
remote sensing aircraft small object detection algorithm based on YOLOv5
Remote sensing aircraft small object detection algorithm bas...
收藏 引用
2024 International Conference on image, Signal processing, and pattern recognition, ISPP 2024
作者: Qiu, Yijuan Xue, Jiefeng Zhang, Jie Jiang, Ping Zhang, Gang Lei, Tao National Key Laboratory of Optical Field Manipulation Science and Technology Chinese Academy of Sciences Sichuan Chengdu610209 China Institute of Optics and Electronics Chinese Academy of Sciences Sichuan Chengdu610209 China University of Chinese Academy of Sciences Beijing100049 China Southwest University of Science and Technology 621010 China
With the rapid development of remote sensing technology, remote sensing images play an important role in the agricultural field, geological field, and natural disaster detection. The size of aircraft in complex scenes... 详细信息
来源: 评论
AquaPile-YOLO: Pioneering Underwater Pile Foundation Detection with Forward-Looking Sonar image processing
收藏 引用
remote sensing 2025年 第3期17卷 360-360页
作者: Xu, Zhongwei Wang, Rui Cao, Tianyu Guo, Wenbo Shi, Bo Ge, Qiqi Tongji Univ Dept Informat & Commun Engn Shanghai 201804 Peoples R China China State Shipbldg Corp Haiying Enterprise Grp C Wuxi 214061 Peoples R China Shanghai Jiao Tong Univ Dept Automat Shanghai 200240 Peoples R China
Underwater pile foundation detection is crucial for environmental monitoring and marine engineering. Traditional methods for detecting underwater pile foundations are labor-intensive and inefficient. Deep learning-bas... 详细信息
来源: 评论
Deep semantic-aware remote sensing image deblurring
收藏 引用
SIGNAL processing 2023年 第1期211卷
作者: Song, Zhenbo Zhang, Zhenyuan Fang, Feiyi Fan, Zhaoxin Lu, Jianfeng Nanjing Univ Sci & Technol Sch Comp Sci & Engn Nanjing 210094 Peoples R China Renmin Univ China Sch Informat Beijing 100872 Peoples R China
This paper addresses the problem of blind deblurring of single remote sensing (RS) images with deep neural networks. Most existing deep learning-based methods are migrated from natural image deblurring models, disrega... 详细信息
来源: 评论
Interchannel Antenna pattern Correction for Azimuth Digital Beamforming in Airborne SAR
收藏 引用
IEEE GEOSCIENCE AND remote sensing LETTERS 2025年 22卷
作者: Castillo, Juan Pablo Navarro Scheiber, Rolf Jaeger, Marc Moreira, Alberto German Aerosp Ctr DLR Microwaves & Radar Inst D-82234 Wessling Germany
High-resolution wide swath (HRWS) synthetic aperture radar (SAR) systems are normally designed to have identical antenna patterns in each receive channel. Nevertheless, due to different factors, this condition might n... 详细信息
来源: 评论