咨询与建议

限定检索结果

文献类型

  • 236 篇 期刊文献
  • 53 篇 会议
  • 32 篇 学位论文
  • 18 册 图书

馆藏范围

  • 339 篇 电子文献
  • 3 种 纸本馆藏

日期分布

学科分类号

  • 226 篇 理学
    • 216 篇 数学
    • 7 篇 系统科学
    • 6 篇 统计学(可授理学、...
    • 5 篇 物理学
    • 3 篇 生物学
    • 2 篇 地球物理学
    • 1 篇 天文学
    • 1 篇 地质学
  • 156 篇 管理学
    • 155 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 130 篇 工学
    • 59 篇 计算机科学与技术...
    • 57 篇 软件工程
    • 21 篇 电气工程
    • 14 篇 控制科学与工程
    • 6 篇 机械工程
    • 5 篇 信息与通信工程
    • 4 篇 电子科学与技术(可...
    • 3 篇 力学(可授工学、理...
    • 2 篇 仪器科学与技术
    • 2 篇 土木工程
    • 1 篇 材料科学与工程(可...
    • 1 篇 动力工程及工程热...
    • 1 篇 化学工程与技术
    • 1 篇 地质资源与地质工...
    • 1 篇 石油与天然气工程
  • 6 篇 经济学
    • 2 篇 理论经济学
    • 2 篇 应用经济学
  • 2 篇 农学
  • 1 篇 法学
    • 1 篇 社会学
  • 1 篇 教育学
    • 1 篇 教育学
  • 1 篇 文学
    • 1 篇 新闻传播学
  • 1 篇 医学

主题

  • 109 篇 linear programmi...
  • 44 篇 interior-point m...
  • 44 篇 interior point m...
  • 26 篇 semidefinite pro...
  • 20 篇 optimization
  • 13 篇 convex optimizat...
  • 11 篇 quadratic progra...
  • 10 篇 线性规划
  • 10 篇 nonlinear progra...
  • 9 篇 interior-point m...
  • 8 篇 convex programmi...
  • 8 篇 linear matrix in...
  • 7 篇 interior point m...
  • 7 篇 complexity theor...
  • 7 篇 linear optimizat...
  • 6 篇 polynomial compl...
  • 6 篇 iterative method...
  • 6 篇 central path
  • 6 篇 mathematical pro...
  • 6 篇 integer programm...

机构

  • 5 篇 univ waterloo de...
  • 5 篇 school of mathem...
  • 4 篇 stanford univ de...
  • 4 篇 univ iowa dept m...
  • 3 篇 department of co...
  • 3 篇 河南科技大学
  • 3 篇 univ edinburgh s...
  • 3 篇 university of wa...
  • 3 篇 univ iowa dept m...
  • 3 篇 rice univ dept c...
  • 2 篇 department of ma...
  • 2 篇 mit alfred p slo...
  • 2 篇 n carolina state...
  • 2 篇 cornell universi...
  • 2 篇 northwestern uni...
  • 2 篇 univ limoges xli...
  • 2 篇 department of co...
  • 2 篇 univ maryland sy...
  • 2 篇 purdue universit...
  • 2 篇 cornell univ sch...

作者

  • 7 篇 gondzio jacek
  • 6 篇 ye yy
  • 6 篇 vandenberghe l
  • 6 篇 zhang y
  • 5 篇 freund rm
  • 5 篇 roos c
  • 5 篇 boyd s
  • 5 篇 tapia ra
  • 5 篇 tuncel levent
  • 4 篇 todd mj
  • 4 篇 terlaky t
  • 4 篇 mitchell je
  • 4 篇 karimi mehdi
  • 4 篇 drineas petros
  • 4 篇 avron haim
  • 4 篇 chowdhury agniva
  • 4 篇 tsuchiya t
  • 4 篇 london palma
  • 3 篇 tamás terlaky
  • 3 篇 meszaros csaba

语言

  • 299 篇 英文
  • 27 篇 中文
  • 13 篇 其他
检索条件"任意字段=Interior Point Methods for Linear Programming: Theory and Practice"
339 条 记 录,以下是51-60 订阅
排序:
The minimum area spanning tree problem: Formulations, Benders decomposition and branch-and-cut algorithms
收藏 引用
COMPUTATIONAL GEOMETRY-theory AND APPLICATIONS 2021年 97卷 101771-101771页
作者: Guimaraes, Dilson Almeida da Cunha, Alexandre Salles Univ Fed Minas Gerais Dept Ciencia Comp Belo Horizonte MG Brazil
The Minimum Area Spanning Tree Problem (MASTP) is defined in terms of a complete undirected graph G, where every vertex represents a point in the two dimensional Euclidean plane. Associated to each edge, there is a di... 详细信息
来源: 评论
Barrier and penalty methods for low-rank semidefinite programming with application to truss topology design
arXiv
收藏 引用
arXiv 2021年
作者: Habibi, Soodeh Kavand, Arefeh Kočvara, Michal Stingl, Michael School of Mathematics University of Birmingham United Kingdom Friedrich-Alexander-Universität Erlangen-Nürnberg Germany Institute of Information Theory and Automation Prague Czech Republic
The aim of this paper is to solve large-and-sparse linear Semidefinite Programs (SDPs) with low-rank solutions. We propose to use a preconditioned conjugate gradient method within second-order SDP algorithms and intro... 详细信息
来源: 评论
Basis Preconditioning In interior point methods
Basis Preconditioning In Interior Point Methods
收藏 引用
作者: Lukas Marius Schork University of Edinburgh
学位级别:博士
Solving normal equations AAᵀx = b, where A is an m x n matrix, is a common task in numerical optimization. For the efficient use of iterative methods, this thesis studies the class of preconditioners of th... 详细信息
来源: 评论
Faster randomized infeasible interior point methods for tall/wide linear programs  20
Faster randomized infeasible interior point methods for tall...
收藏 引用
Proceedings of the 34th International Conference on Neural Information Processing Systems
作者: Agniva Chowdhury Palma London Haim Avron Petros Drineas Department of Statistics Purdue University West Lafayette IN ORIE Department Cornell University Ithaca NY School of Mathematical Sciences Tel Aviv University Tel Aviv Israel Department of Computer Science Purdue University West Lafayette IN
linear programming (LP) is used in many machine learning applications, such as ℓ1-regularized SVMs, basis pursuit, nonnegative matrix factorization, etc. interior point methods (IPMs) are one of the most popular metho...
来源: 评论
Data-Driven Robust and Sparse Solutions for Large-scale Fuzzy Portfolio Optimization
Data-Driven Robust and Sparse Solutions for Large-scale Fuzz...
收藏 引用
IEEE Symposium Series on Computational Intelligence (SSCI)
作者: Na Yu You Liang A. Thavaneswaran Ryerson University Toronto Canada University of Manitoba Winnipeg Canada
There has been a growing interest in combining randomness and fuzziness to solve portfolio optimization problems in finance. However, many proposed fuzzy methods remain difficult to use in practice and hence, there is... 详细信息
来源: 评论
Proximal Distance Algorithms: theory and practice
收藏 引用
JOURNAL OF MACHINE LEARNING RESEARCH 2019年 第1期20卷 2384-2421页
作者: Keys, Kevin L. Zhou, Hua Lange, Kenneth Univ Calif San Francisco Dept Med San Francisco CA 94158 USA Univ Calif Los Angeles Dept Biostat Los Angeles CA 90095 USA Univ Calif Los Angeles Dept Biomath Los Angeles CA 90095 USA Univ Calif Los Angeles Dept Human Genet Los Angeles CA 90095 USA Univ Calif Los Angeles Dept Stat Los Angeles CA 90095 USA
Proximal distance algorithms combine the classical penalty method of constrained minimization with distance majorization. If f(x) is the loss function, and C is the constraint set in a constrained minimization problem... 详细信息
来源: 评论
Speeding up linear programming using randomized linear algebra
arXiv
收藏 引用
arXiv 2020年
作者: Chowdhury, Agniva London, Palma Avron, Haim Drineas, Petros Department of Statistics Purdue University West LafayetteIN United States Department of Computer Science California Institute of Technology PasadenaCA United States School of Mathematical Sciences Tel Aviv University Tel Aviv Israel Department of Computer Science Purdue University West LafayetteIN United States
linear programming (LP) is an extremely useful tool and has been successfully applied to solve various problems in a wide range of areas, including operations research, engineering, economics, or even more abstract ma... 详细信息
来源: 评论
Large-step interior-point algorithm for linear optimization based on a new wide neighbourhood
收藏 引用
CENTRAL EUROPEAN JOURNAL OF OPERATIONS RESEARCH 2018年 第3期26卷 551-563页
作者: Darvay, Zsolt Takacs, Petra Renata Babes Bolyai Univ Fac Math & Comp Sci 1 Mihail Kogalniceanu St Cluj Napoca 400084 Romania Budapest Univ Technol & Econ Inst Math Muegyet Rkp 3 H-1111 Budapest Hungary
The interior-point algorithms can be classified in multiple ways. One of these takes into consideration the length of the step. In this way, we can speak about large-step and short-step methods, that work in different... 详细信息
来源: 评论
Preconditioned Krylov iterations and condensing in interior point MPC method
收藏 引用
IFAC-PapersOnLine 2018年 第20期51卷 388-393页
作者: Malyshev, Alexander Quirynen, Rien Knyazev, Andrew University of Bergen Department of Mathematics BergenPostbox 8700 5020 Norway Mitsubishi Electric Research Laboratories 201 Broadway 8th floor CambridgeMA02139 United States
We investigate using Krylov subspace iterative methods in model predictive control (MPC), where the prediction model is given by linear or linearized systems with linear inequality constraints on the state and the inp... 详细信息
来源: 评论
Two computationally efficient polynomial-iteration infeasible interior-point algorithms for linear programming
收藏 引用
NUMERICAL ALGORITHMS 2018年 第3期79卷 957-992页
作者: Yang, Y. US NRC Off Res Two White Flint North 11545 Rockville Pike Rockville MD 20852 USA
Since the beginning of the development of interior-point methods, there exists a puzzling gap between the results in theory and the observations in numerical experience, i.e., algorithms with good polynomial bounds ar... 详细信息
来源: 评论