咨询与建议

限定检索结果

文献类型

  • 119,436 篇 会议
  • 2,808 篇 期刊文献
  • 752 册 图书
  • 6 篇 学位论文

馆藏范围

  • 123,001 篇 电子文献
  • 3 种 纸本馆藏

日期分布

学科分类号

  • 77,742 篇 工学
    • 67,627 篇 计算机科学与技术...
    • 47,013 篇 软件工程
    • 15,376 篇 信息与通信工程
    • 9,891 篇 生物工程
    • 9,264 篇 控制科学与工程
    • 8,337 篇 电气工程
    • 7,967 篇 生物医学工程(可授...
    • 3,881 篇 机械工程
    • 3,271 篇 光学工程
    • 3,099 篇 化学工程与技术
    • 2,784 篇 安全科学与工程
    • 2,661 篇 仪器科学与技术
    • 2,591 篇 电子科学与技术(可...
    • 2,272 篇 动力工程及工程热...
  • 32,176 篇 理学
    • 18,792 篇 数学
    • 11,044 篇 生物学
    • 8,905 篇 统计学(可授理学、...
    • 5,996 篇 系统科学
    • 5,101 篇 物理学
    • 2,931 篇 化学
  • 20,265 篇 管理学
    • 11,201 篇 图书情报与档案管...
    • 10,412 篇 管理科学与工程(可...
    • 5,009 篇 工商管理
  • 8,890 篇 医学
    • 7,523 篇 临床医学
    • 6,583 篇 基础医学(可授医学...
    • 4,015 篇 药学(可授医学、理...
    • 3,088 篇 公共卫生与预防医...
  • 3,283 篇 法学
    • 2,877 篇 社会学
  • 2,283 篇 农学
    • 2,181 篇 作物学
  • 2,272 篇 教育学
    • 2,202 篇 教育学
  • 2,046 篇 经济学
  • 547 篇 文学
  • 107 篇 军事学
  • 67 篇 艺术学
  • 3 篇 历史学
  • 2 篇 哲学

主题

  • 22,251 篇 machine learning
  • 7,507 篇 deep learning
  • 6,793 篇 accuracy
  • 6,770 篇 support vector m...
  • 6,570 篇 machine learning...
  • 6,030 篇 training
  • 5,738 篇 predictive model...
  • 5,494 篇 feature extracti...
  • 5,428 篇 data models
  • 4,660 篇 data mining
  • 3,638 篇 computational mo...
  • 3,031 篇 neural networks
  • 2,419 篇 prediction algor...
  • 2,388 篇 convolutional ne...
  • 2,333 篇 real-time system...
  • 2,250 篇 decision trees
  • 2,230 篇 forecasting
  • 2,209 篇 adversarial mach...
  • 2,064 篇 big data
  • 1,985 篇 artificial intel...

机构

  • 305 篇 chitkara univers...
  • 137 篇 university of sc...
  • 123 篇 computer science...
  • 107 篇 school of comput...
  • 105 篇 lovely professio...
  • 91 篇 karnataka bangal...
  • 85 篇 department of co...
  • 85 篇 school of comput...
  • 67 篇 department of co...
  • 66 篇 college of compu...
  • 62 篇 shanghai jiao to...
  • 60 篇 huazhong univers...
  • 53 篇 chinese acad sci...
  • 51 篇 soochow univ sch...
  • 48 篇 school of comput...
  • 46 篇 univ chinese aca...
  • 42 篇 sun yat sen univ...
  • 40 篇 university of ch...
  • 39 篇 department of co...
  • 37 篇 department of co...

作者

  • 53 篇 wang lei
  • 41 篇 li yang
  • 41 篇 liu yang
  • 38 篇 shiva mehta
  • 37 篇 zhang lei
  • 36 篇 li xin
  • 33 篇 zheng wei-shi
  • 30 篇 zhang tao
  • 29 篇 liu bo
  • 29 篇 jitpattanakul an...
  • 27 篇 hnoohom narit
  • 27 篇 li peng
  • 27 篇 mekruksavanich s...
  • 26 篇 lei wang
  • 26 篇 yang qiang
  • 25 篇 sharma vikrant
  • 24 篇 zhang lin
  • 24 篇 j. relin francis...
  • 24 篇 amandeep nagpal
  • 23 篇 li cheng

语言

  • 105,009 篇 英文
  • 17,655 篇 其他
  • 1,351 篇 中文
  • 29 篇 土耳其文
  • 12 篇 西班牙文
  • 8 篇 俄文
  • 5 篇 德文
  • 5 篇 葡萄牙文
  • 4 篇 法文
  • 2 篇 日文
  • 1 篇 捷克文
检索条件"任意字段=International Conference on Applied Machine Learning and Data Science"
123002 条 记 录,以下是141-150 订阅
排序:
Performance Evaluation of machine learning Algorithms on Skin Cancer data Set Using Principal Component Analysis and Gabor Filters
IAENG International Journal of Computer Science
收藏 引用
IAENG international Journal of Computer science 2024年 第7期51卷 831-841页
作者: Shaik, Abdul Rahaman Kumar, P. Rajesh Department of ECE AU College of Engineering Andhra University Andhra Pradesh Visakhapatnam India
machine learning (ML) is an advanced branch of Artificial Intelligence (AI) focused on creating algorithms and statistical models that empower computer systems to learn from data and autonomously make informed decisio... 详细信息
来源: 评论
Evaluation of Semi-Supervised machine learning applied to Affective State Detection
Evaluation of Semi-Supervised Machine Learning applied to Af...
收藏 引用
IEEE international conference on Pervasive Computing and Communications (PerCom)
作者: Martin-Melero, Inigo Serrano-Mamolar, Ana Rodriguez-Diez, Juan J. Univ Leon Leon Spain Univ Burgos Burgos Spain
The affective computing field usually concerns data that is difficult, expensive or time-consuming to label. One way to overcome this limitation is the application of Semi-Supervised machine learning, that typically w... 详细信息
来源: 评论
A Review of Unsupervised Anomaly Detection Techniques for Health Insurance Fraud  10
A Review of Unsupervised Anomaly Detection Techniques for He...
收藏 引用
IEEE 10th international conference on Big data Computing Service and machine learning Applications (IEEE BigdataService)
作者: Leevy, Joffrey L. Salekshahrezaee, Zahra Khoshgoftaar, Taghi M. Florida Atlantic Univ Boca Raton FL 33431 USA
This paper surveys the latest unsupervised anomaly detection methodologies applied to health insurance fraud, covering studies from 2017 to 2024. Our review includes a variety of machine-learning approaches, evaluatin... 详细信息
来源: 评论
Benchmarking Meta AutoML  16
Benchmarking Meta AutoML
收藏 引用
16th international conference on ENTERprise Information Systems, CENTERIS 2024 - 12th international conference on Project MANagement, ProjMAN 2024 - 14th international conference on Health and Social Care Information Systems and Technologies, HCist 2024
作者: Zender, Alexander Humm, Bernhard G. Darmstadt University of Applied Sciences Schöfferstr. 3 Darmstadt64295 Germany
Meta Automated machine learning (Meta AutoML) is a concept that allows data scientists and domain experts to generate effective machine learning models automatically. To achieve this, Meta AutoML merges existing AutoM... 详细信息
来源: 评论
Prediction from 3D Pictogram Drawing using AR technology for Digital Twin  13
Prediction from 3D Pictogram Drawing using AR technology for...
收藏 引用
13th international conference on Renewable Energy Research and Applications
作者: Mitsuhashi, Kaoru Teikyo Univ Dept Mech & Precis Syst Utsunomiya Tochigi Japan
Digital Twin technology, which involves creating a virtual replica using data collected from the real world, including 3D CAD and CG modeling, is an essential tool for energy conservation. The 3D direct drawing system... 详细信息
来源: 评论
Predicting creep life of CrMo pressure vessel steel using machine learning models with optimal feature subset selection
收藏 引用
international JOURNAL OF PRESSURE VESSELS AND PIPING 2024年 212卷
作者: Chai, Mengyu He, Yuhang Wang, Junjie Wu, Zichuan Lei, Boyu Xi An Jiao Tong Univ Sch Chem Engn & Technol Xian 710049 Peoples R China Xi An Jiao Tong Univ Sch Mech Engn Xian 710049 Peoples R China
The data-driven approach for creep life prediction typically integrates numerous characteristics, including material compositions, manufacturing details, and service conditions, into machine learning models. In this s... 详细信息
来源: 评论
Some Scientific Results of the XXV international conference DAMDID/RCDL-2023
收藏 引用
PATTERN RECOGNITION AND IMAGE ANALYSIS 2024年 第3期34卷 797-804页
作者: Stupnikov, S. A. Ignatov, D. I. Baixeries, J. Russian Acad Sci Fed Res Ctr Comp Sci & Control Moscow 119333 Russia Univ Politecn Cataluna Barcelona 08034 Spain
This paper discusses the main scientific results of the XXV international conference on data Analytics and Management in data-Intensive DomainsDomains, held on October 24-27, 2022 in Moscow, Russia. The motivation and... 详细信息
来源: 评论
Soft Actor-Critic in Lux AI Challenge Season 2: Optimizing Resource Collection and Lichen Growth Strategies with Advanced data science and machine learning  3
Soft Actor-Critic in Lux AI Challenge Season 2: Optimizing R...
收藏 引用
international conference on Advances in Computing, Communication and applied Informatics (ACCAI)
作者: Yao, JingTao Muppala, Sunny Chowdhary Koppolu, Krishna Chaitanya Univ Regina Dept Comp Sci Regina SK Canada Natl Inst Technol Calicut Dept Comp Sci Calicut Kerala India
In Lux AI Challenge Season 2, this project uses a turn-based strategic game called Soft Actor-Critic (SAC). In a dynamic environment, SAC, a cutting-edge deep reinforcement learning algorithm, maximizes lichen growth ... 详细信息
来源: 评论
Autonomy in Cognitive Development of Robots: Embracing Emergent and Predefined Knowledge and Behavior  20
Autonomy in Cognitive Development of Robots: Embracing Emerg...
收藏 引用
IEEE 20th international conference on Automation science and Engineering (CASE)
作者: Isaka, Satoshi Vis Del Mar LLC San Jose CA 95120 USA
This article addresses the fundamental questions on machine learning: what does it mean for machines to learn from experience, and what does it mean by machines in machine learning? Despite recent popularity and growt... 详细信息
来源: 评论
Certified private data release for sparse Lipschitz functions  27
Certified private data release for sparse Lipschitz function...
收藏 引用
27th international conference on Artificial Intelligence and Statistics (AISTATS)
作者: Donhauser, Konstantin Lokna, Johan Sanyal, Amartya Boedihardjo, March Honig, Robert Yang, Fanny Swiss Fed Inst Technol Zurich Switzerland MPI Tubingen Germany
As machine learning has become more relevant for everyday applications, a natural requirement is the protection of the privacy of the training data. When the relevant learning questions are unknown in advance, or hype... 详细信息
来源: 评论