咨询与建议

限定检索结果

文献类型

  • 1,926 篇 会议
  • 13 篇 期刊文献
  • 10 册 图书

馆藏范围

  • 1,949 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,033 篇 工学
    • 909 篇 计算机科学与技术...
    • 491 篇 软件工程
    • 297 篇 控制科学与工程
    • 122 篇 信息与通信工程
    • 116 篇 电气工程
    • 73 篇 生物工程
    • 44 篇 生物医学工程(可授...
    • 40 篇 仪器科学与技术
    • 34 篇 机械工程
    • 30 篇 电子科学与技术(可...
    • 21 篇 化学工程与技术
    • 21 篇 网络空间安全
    • 13 篇 光学工程
    • 9 篇 动力工程及工程热...
  • 321 篇 理学
    • 211 篇 数学
    • 91 篇 生物学
    • 82 篇 统计学(可授理学、...
    • 49 篇 系统科学
    • 28 篇 物理学
    • 17 篇 化学
  • 287 篇 管理学
    • 218 篇 管理科学与工程(可...
    • 95 篇 图书情报与档案管...
    • 32 篇 工商管理
  • 35 篇 医学
    • 30 篇 临床医学
    • 28 篇 基础医学(可授医学...
    • 21 篇 药学(可授医学、理...
  • 21 篇 法学
    • 20 篇 社会学
  • 18 篇 经济学
    • 18 篇 应用经济学
  • 11 篇 农学
    • 11 篇 作物学
  • 7 篇 教育学
    • 7 篇 教育学
  • 6 篇 军事学
  • 5 篇 文学
  • 2 篇 艺术学
  • 1 篇 哲学

主题

  • 493 篇 machine learning
  • 165 篇 data mining
  • 155 篇 computer science
  • 153 篇 machine learning...
  • 141 篇 support vector m...
  • 118 篇 cybernetics
  • 105 篇 neural networks
  • 94 篇 clustering algor...
  • 90 篇 computer network...
  • 88 篇 learning systems
  • 80 篇 educational inst...
  • 80 篇 distributed comp...
  • 66 篇 electronic mail
  • 66 篇 artificial intel...
  • 64 篇 support vector m...
  • 62 篇 algorithm design...
  • 60 篇 humans
  • 59 篇 pattern recognit...
  • 58 篇 computational mo...
  • 58 篇 testing

机构

  • 63 篇 department of co...
  • 40 篇 department of co...
  • 24 篇 school of comput...
  • 23 篇 department of co...
  • 14 篇 machine learning...
  • 14 篇 department of co...
  • 14 篇 college of mecha...
  • 13 篇 school of comput...
  • 12 篇 college of compu...
  • 12 篇 institute of com...
  • 11 篇 hebei univ coll ...
  • 8 篇 institute of com...
  • 8 篇 school of comput...
  • 7 篇 department of in...
  • 7 篇 school of comput...
  • 7 篇 department of co...
  • 7 篇 department of au...
  • 7 篇 department of in...
  • 6 篇 key laboratory o...
  • 6 篇 key laboratory o...

作者

  • 26 篇 yeung daniel s.
  • 22 篇 d.s. yeung
  • 16 篇 xi-zhao wang
  • 12 篇 hui wang
  • 12 篇 ng wing w. y.
  • 12 篇 tsang eric c. c.
  • 11 篇 e.c.c. tsang
  • 11 篇 daniel s. yeung
  • 11 篇 kuan-quan wang
  • 10 篇 wang xi-zhao
  • 10 篇 yeung
  • 10 篇 tsang
  • 9 篇 jane you
  • 9 篇 you jane
  • 9 篇 zhang david
  • 8 篇 qing he
  • 8 篇 de-gang chen
  • 7 篇 qing-hua li
  • 7 篇 yu zhiwen
  • 7 篇 li le

语言

  • 1,945 篇 英文
  • 3 篇 中文
  • 1 篇 其他
检索条件"任意字段=International Conference on Machine Learning and Computing(ICMLC 2009)"
1949 条 记 录,以下是21-30 订阅
排序:
Efficient 3D Reconstruction of Multiple Plants from UAV Images with Deep learning  24
Efficient 3D Reconstruction of Multiple Plants from UAV Imag...
收藏 引用
16th international conference on machine learning and computing (icmlc)
作者: Huang, Hong Wang, Zhuowei Zhao, Genping Guangdong Univ Technol Sch Comp Sci & Technol Guangzhou Guangdong Peoples R China
Acquiring the 3D structure of plants is a critical task in the agricultural industry. Existing methods of generating 3D point clouds for multiple plants require a long processing time. In this paper, a 3D reconstructi... 详细信息
来源: 评论
Visual-Semantic Alignment for Few-shot Remote Sensing Scene Classification  24
Visual-Semantic Alignment for Few-shot Remote Sensing Scene ...
收藏 引用
16th international conference on machine learning and computing (icmlc)
作者: Li, Haojun Li, Linjia Luo, Wei South China Agr Univ Pazhou Lab Guangzhou Peoples R China
We propose a few-shot learning approach that aligns visual and semantic features in an embedding feature space to alleviate the shortage of training (or reference) data in remote sensing scene classification (RSSC). S... 详细信息
来源: 评论
Character Expressions in Meta-learning for Extremely Low Resource Language Speech Recognition  24
Character Expressions in Meta-Learning for Extremely Low Res...
收藏 引用
16th international conference on machine learning and computing (icmlc)
作者: Zhou, Rui Ito, Akinori Nose, Takashi Tohoku Univ Grad Sch Engn Sendai Miyagi Japan
For the construction of a high-quality speech recognition system, a substantial volume of annotated speech data is requisite. However, preparing such expansive datasets is impracticable for a vast majority of global l... 详细信息
来源: 评论
Multi-task learning Model for Location Estimation Using RSSI of Wireless LAN in NLoS Environment  24
Multi-task Learning Model for Location Estimation Using RSSI...
收藏 引用
16th international conference on machine learning and computing (icmlc)
作者: Wei, Zehui Ding, Jianbing Wang, Zening Wang, Xidong Ye, Xiaozhou Ouyang, Ye AsiaInfo Technol China Inc Beijing Peoples R China
In 6G networks, applying native AI/ML techniques to user signal quality data to obtain high-precision location estimation is a typical application scenario. Recent advanced techniques using global positioning system (... 详细信息
来源: 评论
Soft Adversarial Offline Reinforcement learning via Reducing the Attack Strength for Generalization  24
Soft Adversarial Offline Reinforcement Learning via Reducing...
收藏 引用
16th international conference on machine learning and computing (icmlc)
作者: Qiao, Wandi Yang, Rui Univ Sci & Technol China Hefei Peoples R China
Improving the generalization ability in offline reinforcement learning (RL) has received much attention in recent years. Existing adversarial RL approaches use adversarial training for the policy improvement, thus enh... 详细信息
来源: 评论
learning Presolver Selection for Mixed-Integer Linear Programming  24
Learning Presolver Selection for Mixed-Integer Linear Progra...
收藏 引用
16th international conference on machine learning and computing (icmlc)
作者: Song, Wentao Gu, Naijie Univ Sci & Technol China Hefei Peoples R China
Presolving has become an important component of modern Mixed-integer linear programming (MILP) solvers. Empirically, it has been observed that the performance of the solver is significantly influenced by the presolvin... 详细信息
来源: 评论
Classification and Segmentation of Apple Diseases Based on Deep learning  24
Classification and Segmentation of Apple Diseases Based on D...
收藏 引用
16th international conference on machine learning and computing (icmlc)
作者: Huang, Huanzhou Wang, Zhuowei Zhao, Genping Guangdong Univ Technol Sch Comp Sci & Technol Guangzhou Peoples R China
Aiming to address the issue of low accuracy in existing algorithms due to the limited scale of specific apple disease datasets and complex background information, a deep learning method integrating apple disease class... 详细信息
来源: 评论
Lightweight Object Detection-Tracking using Deep Feature Distillation  24
Lightweight Object Detection-Tracking using Deep Feature Dis...
收藏 引用
16th international conference on machine learning and computing (icmlc)
作者: Xue, B. Zheng, Q. Li, Z. Zhao, W. Wang, H. Feng, X. Tsinghua Univ Xian Jiaotong Univ Natl Univ Def Technol Beijing Peoples R China Tongji Univ Xian Jiaotong Univ Shanghai Peoples R China Natl Univ Def Technol Changsha Peoples R China Tsinghua Univ Beijing Peoples R China
Object detection and tracking are critical and fundamental problems in machine vision task. In this paper, an object detection and tracking method is proposed based on deep feature distillation. Particularly, an adapt... 详细信息
来源: 评论
FedRL: Federated learning with Non-IID Data via Review learning  24
FedRL: Federated Learning with Non-IID Data via Review Learn...
收藏 引用
16th international conference on machine learning and computing (icmlc)
作者: Wang, Jinbo Wang, Ruijin Pei, Xikai Univ Elect Sci & Technol China Chengdu Peoples R China
Federated learning epitomizes a sophisticated distributed machine learning methodology, enabling collaborative neural network model training across multiple entities without necessitating the transfer of local data, t... 详细信息
来源: 评论
Continual Few-Shot Relation learning Via Dynamic Margin Loss and Space Recall  24
Continual Few-Shot Relation Learning Via Dynamic Margin Loss...
收藏 引用
16th international conference on machine learning and computing (icmlc)
作者: Li, Yongbing Duan, Pengfei Rong, Yi Yang, Yiwen Wang, Aoxing Wuhan Univ Technol Sch Comp Sci & Artificial Intelligence Wuhan Peoples R China Wuhan Univ Technol Sanya Sci & Educ Innovat Pk Sanya Peoples R China
Different from conventional continual relation learning (CRL), in continual few-shot relation learning (CFRL), there are only a small number of training samples for learning novel unseen relations. However, existing a... 详细信息
来源: 评论