咨询与建议

限定检索结果

文献类型

  • 119 篇 会议
  • 6 册 图书
  • 5 篇 期刊文献

馆藏范围

  • 130 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 106 篇 工学
    • 102 篇 计算机科学与技术...
    • 12 篇 软件工程
    • 8 篇 电气工程
    • 7 篇 信息与通信工程
    • 4 篇 电子科学与技术(可...
    • 2 篇 控制科学与工程
    • 1 篇 动力工程及工程热...
    • 1 篇 建筑学
    • 1 篇 土木工程
    • 1 篇 测绘科学与技术
    • 1 篇 安全科学与工程
    • 1 篇 网络空间安全
  • 36 篇 理学
    • 29 篇 统计学(可授理学、...
    • 14 篇 数学
    • 2 篇 系统科学
    • 1 篇 物理学
  • 6 篇 管理学
    • 3 篇 管理科学与工程(可...
    • 3 篇 图书情报与档案管...
    • 1 篇 工商管理
  • 3 篇 法学
    • 3 篇 社会学

主题

  • 21 篇 differential pri...
  • 18 篇 statistical disc...
  • 14 篇 privacy
  • 13 篇 synthetic data
  • 11 篇 data privacy
  • 11 篇 confidentiality
  • 6 篇 statistical disc...
  • 4 篇 data utility
  • 4 篇 cell suppression
  • 3 篇 clustering
  • 3 篇 tabular data
  • 3 篇 computers and so...
  • 3 篇 privacy-preservi...
  • 3 篇 statistics
  • 3 篇 microaggregation
  • 3 篇 database managem...
  • 3 篇 disclosure contr...
  • 3 篇 official statist...
  • 3 篇 controlled tabul...
  • 3 篇 additive noise

机构

  • 3 篇 natl ctr hlth st...
  • 3 篇 inst employment ...
  • 3 篇 penn state univ ...
  • 3 篇 umea univ dept c...
  • 2 篇 univ politecn ca...
  • 2 篇 ctr wiskunde & i...
  • 2 篇 urban inst washi...
  • 2 篇 csiro computat i...
  • 2 篇 georgia southern...
  • 2 篇 eurecom biot
  • 2 篇 univ rovira & vi...
  • 2 篇 stat netherlands...
  • 2 篇 off natl stat ti...
  • 2 篇 carnegie mellon ...
  • 2 篇 department of co...
  • 2 篇 univ politecn ca...
  • 2 篇 rovira i virgili...
  • 2 篇 rti int res tria...
  • 2 篇 univ lancaster l...
  • 2 篇 karlsruhe inst t...

作者

  • 14 篇 domingo-ferrer j...
  • 6 篇 muralidhar krish...
  • 5 篇 oganian anna
  • 5 篇 josep domingo-fe...
  • 4 篇 castro jordi
  • 4 篇 sanchez david
  • 4 篇 vilhuber lars
  • 3 篇 slavkovic aleksa...
  • 3 篇 ruggles steven
  • 3 篇 drechsler joerg
  • 3 篇 ruiz nicolas
  • 3 篇 blanco-justicia ...
  • 3 篇 lesaja goran
  • 3 篇 torra vicenc
  • 3 篇 giessing sarah
  • 3 篇 iacob ionut
  • 2 篇 mccaa robert
  • 2 篇 onen melek
  • 2 篇 zari oualid
  • 2 篇 soria-comas jord...

语言

  • 129 篇 英文
  • 1 篇 中文
检索条件"任意字段=International Conference on Privacy in Statistical Databases, PSD 2012"
130 条 记 录,以下是91-100 订阅
排序:
Differentially-Private Logistic Regression for Detecting Multiple-SNP Association in GWAS databases
Differentially-Private Logistic Regression for Detecting Mul...
收藏 引用
UNESCO Chair in Data privacy international conference on privacy in statistical databases (psd)
作者: Yu, Fei Rybar, Michal Uhler, Caroline Fienberg, Stephen E. Carnegie Mellon Univ Pittsburgh PA 15213 USA IST Austria A-3400 Klosterneuburg Austria
Following the publication of an attack on genome-wide association studies (GWAS) data proposed by Homer et al., considerable attention has been given to developing methods for releasing GWAS data in a privacy-preservi... 详细信息
来源: 评论
Controlled Shuffling, statistical Confidentiality and Microdata Utility: A Successful Experiment with a 10% Household Sample of the 2011 Population Census of Ireland for the IPUMS-international Database
Controlled Shuffling, Statistical Confidentiality and Microd...
收藏 引用
UNESCO Chair in Data privacy international conference on privacy in statistical databases (psd)
作者: McCaa, Robert Muralidhar, Krishnamurty Sarathy, Rathindra Comerford, Michael Esteve-Palos, Albert Minnesota Populat Ctr Minneapolis MN 55455 USA
IPUMS-international disseminates more than two hundred-fifty integrated, confidentialized census microdata samples to thousands of researchers world-wide at no cost. The number of samples is increasing at the rate of ... 详细信息
来源: 评论
Comparison of Different Sensitivity Rules for Tabular Data and Presenting a New Rule - The Interval Rule
Comparison of Different Sensitivity Rules for Tabular Data a...
收藏 引用
UNESCO Chair in Data privacy international conference on privacy in statistical databases (psd)
作者: Bring, Johan Wang, Qun Stat Sweden Stockholm Sweden
statistical disclosure control (SDC) is a set of methods that are used to reduce the risk of disclosing information on individuals, businesses or other organisations. The focus of this paper is on sensitivity rules, w... 详细信息
来源: 评论
Towards Secure and Practical Location privacy through Private Equality Testing
Towards Secure and Practical Location Privacy through Privat...
收藏 引用
UNESCO Chair in Data privacy international conference on privacy in statistical databases (psd)
作者: Magkos, Emmanouil Kotzanikolaou, Panayiotis Magioladitis, Marios Sioutas, Spyros Verykios, Vassilios S. Ionian Univ Dept Informat Kerkyra 49100 Greece Univ Piraeus Dept Informat Piraeus 18534 Greece Hellen Open Univ Sch Sci & Technol GR-26335 Patras Greece
In this paper, we propose a practical, privacy-preserving equality testing primitive which allows two users to learn if they share the same encrypted input data. Our protocol assumes no trust on a third party and/or o... 详细信息
来源: 评论
A CTA Model Based on the Huber Function
A CTA Model Based on the Huber Function
收藏 引用
UNESCO Chair in Data privacy international conference on privacy in statistical databases (psd)
作者: Castro, Jordi Univ Politecn Cataluna Dept Stat & Operat Res ES-08034 Barcelona Spain
Minimum distance controlled tabular adjustment (CTA) is an emerging perturbative method of statistical disclosure control for tabular data. The goal of CTA is to find the closest safe table to some original tabular da... 详细信息
来源: 评论
km-Anonymity for Continuous Data Using Dynamic Hierarchies
<i>k<SUP>m</SUP></i>-Anonymity for Continuous Data Using Dyn...
收藏 引用
UNESCO Chair in Data privacy international conference on privacy in statistical databases (psd)
作者: Gkountouna, Olga Angeli, Sotiris Zigomitros, Athanasios Terrovitis, Manolis Vassiliou, Yannis Natl Tech Univ Athens GR-10682 Athens Greece Inst Management Informat Syst IMIS Athens Greece Univ Piraeus Piraeus Greece
Many organizations, enterprises or public services collect and manage personal data of individuals. These data contain knowledge that is of substantial value for scientists and market experts, but carelessly dissemina... 详细信息
来源: 评论
Enhancing the efficiency in privacy preserving learning of decision trees in partitioned databases
Enhancing the efficiency in privacy preserving learning of d...
收藏 引用
international conference on privacy in statistical databases, psd 2012
作者: Lory, Peter University of Regensburg D-93040 Regensburg Germany
This paper considers a scenario where two parties having private databases wish to cooperate by computing a data mining algorithm on the union of their databases without revealing any unnecessary information. In parti... 详细信息
来源: 评论
Security of random output perturbation for statistical databases
Security of random output perturbation for statistical datab...
收藏 引用
international conference on privacy in statistical databases, psd 2012
作者: Zanger, Daniel Z. SRI International Arlington VA United States
We prove that, with respect to a database query response privacy mechanism employing output perturbation with i.i.d. random noise addition, an adversary can, allowed a sufficiently large number of queries, exactly det... 详细信息
来源: 评论
Valid statistical inference on automatically matched files
Valid statistical inference on automatically matched files
收藏 引用
international conference on privacy in statistical databases, psd 2012
作者: Hall, Rob Fienberg, Stephen Department of Statistics and Machine Learning Department Carnegie Mellon University Pittsburgh PA 15213 United States
We develop a statistical process for determining a confidence set for an unknown bipartite matching. It requires only modest assumptions on the nature of the distribution of the data. The confidence set involves a set... 详细信息
来源: 评论
Empirical evaluation of statistical inference from differentially-private contingency tables
Empirical evaluation of statistical inference from different...
收藏 引用
international conference on privacy in statistical databases, psd 2012
作者: Charest, Anne-Sophie Université Laval Canada
In this paper, we evaluate empirically the quality of statistical inference from differentially-private synthetic contingency tables. We compare three methods: histogram perturbation, the Dirichlet-Multinomial synthes... 详细信息
来源: 评论