咨询与建议

限定检索结果

文献类型

  • 119 篇 会议
  • 6 册 图书
  • 5 篇 期刊文献

馆藏范围

  • 130 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 106 篇 工学
    • 102 篇 计算机科学与技术...
    • 12 篇 软件工程
    • 8 篇 电气工程
    • 7 篇 信息与通信工程
    • 4 篇 电子科学与技术(可...
    • 2 篇 控制科学与工程
    • 1 篇 动力工程及工程热...
    • 1 篇 建筑学
    • 1 篇 土木工程
    • 1 篇 测绘科学与技术
    • 1 篇 安全科学与工程
    • 1 篇 网络空间安全
  • 36 篇 理学
    • 29 篇 统计学(可授理学、...
    • 14 篇 数学
    • 2 篇 系统科学
    • 1 篇 物理学
  • 6 篇 管理学
    • 3 篇 管理科学与工程(可...
    • 3 篇 图书情报与档案管...
    • 1 篇 工商管理
  • 3 篇 法学
    • 3 篇 社会学

主题

  • 21 篇 differential pri...
  • 18 篇 statistical disc...
  • 14 篇 privacy
  • 13 篇 synthetic data
  • 11 篇 data privacy
  • 11 篇 confidentiality
  • 6 篇 statistical disc...
  • 4 篇 data utility
  • 4 篇 cell suppression
  • 3 篇 clustering
  • 3 篇 tabular data
  • 3 篇 computers and so...
  • 3 篇 privacy-preservi...
  • 3 篇 statistics
  • 3 篇 microaggregation
  • 3 篇 database managem...
  • 3 篇 disclosure contr...
  • 3 篇 official statist...
  • 3 篇 controlled tabul...
  • 3 篇 additive noise

机构

  • 3 篇 natl ctr hlth st...
  • 3 篇 inst employment ...
  • 3 篇 penn state univ ...
  • 3 篇 umea univ dept c...
  • 2 篇 univ politecn ca...
  • 2 篇 ctr wiskunde & i...
  • 2 篇 urban inst washi...
  • 2 篇 csiro computat i...
  • 2 篇 georgia southern...
  • 2 篇 eurecom biot
  • 2 篇 univ rovira & vi...
  • 2 篇 stat netherlands...
  • 2 篇 off natl stat ti...
  • 2 篇 carnegie mellon ...
  • 2 篇 department of co...
  • 2 篇 univ politecn ca...
  • 2 篇 rovira i virgili...
  • 2 篇 rti int res tria...
  • 2 篇 univ lancaster l...
  • 2 篇 karlsruhe inst t...

作者

  • 14 篇 domingo-ferrer j...
  • 6 篇 muralidhar krish...
  • 5 篇 oganian anna
  • 5 篇 josep domingo-fe...
  • 4 篇 castro jordi
  • 4 篇 sanchez david
  • 4 篇 vilhuber lars
  • 3 篇 slavkovic aleksa...
  • 3 篇 ruggles steven
  • 3 篇 drechsler joerg
  • 3 篇 ruiz nicolas
  • 3 篇 blanco-justicia ...
  • 3 篇 lesaja goran
  • 3 篇 torra vicenc
  • 3 篇 giessing sarah
  • 3 篇 iacob ionut
  • 2 篇 mccaa robert
  • 2 篇 onen melek
  • 2 篇 zari oualid
  • 2 篇 soria-comas jord...

语言

  • 129 篇 英文
  • 1 篇 中文
检索条件"任意字段=International Conference on Privacy in Statistical Databases, PSD 2012"
130 条 记 录,以下是61-70 订阅
排序:
Multivariate Top-Coding for statistical Disclosure Limitation
Multivariate Top-Coding for Statistical Disclosure Limitatio...
收藏 引用
international conference on privacy in statistical databases (psd)
作者: Oganian, Anna Iacob, Ionut Lesaja, Goran Natl Ctr Hlth Stat 3311 Toledo Rd Hyattsville MD 20782 USA Georgia Southern Univ Dept Math Sci POB 8093 Statesboro GA 30460 USA US Naval Acad Math Dept 121 Blake Rd Annapolis MD 21402 USA
One of the most challenging problems for national statistical agencies is how to release to the public microdata sets with a large number of attributes while keeping the disclosure risk of sensitive information of dat... 详细信息
来源: 评论
international conference on privacy in statistical databases, psd 2016
收藏 引用
international conference on privacy in statistical databases, psd 2016
The proceedings contain 19 papers. The special focus in this conference is on Tabular Data Protection, Microdata, Big Data Masking, Protection Using privacy Models and Synthetic Data. The topics include: An alternativ...
来源: 评论
A General Framework and Metrics for Longitudinal Data Anonymization
A General Framework and Metrics for Longitudinal Data Anonym...
收藏 引用
international conference on privacy in statistical databases (psd)
作者: Ruiz, Nicolas Univ Rovira & Virgili CYBERCAT Ctr Cybersecur Res Catalonia Dept Comp Sci & Math UNESCO Chair Data Privacy Tarragona Spain
The bulk of methods in statistical disclosure control primarily deal with individual data from a cross-sectional perspective, i.e. data where individuals are observed at one single point in time. However, nowadays lon... 详细信息
来源: 评论
The Application of Genetic Algorithms to Data Synthesis: A Comparison of Three Crossover Methods
The Application of Genetic Algorithms to Data Synthesis: A C...
收藏 引用
international conference on privacy in statistical databases (psd)
作者: Chen, Yingrui Elliot, Mark Smith, Duncan Univ Manchester Manchester M13 9PL Lancs England
Data synthesis is a data confidentiality method which is applied to microdata to prevent leakage of sensitive information about respondents. Instead of publishing real data, data synthesis produces an artificial datas... 详细信息
来源: 评论
Synthetic Data via Quantile Regression for Heavy-Tailed and Heteroskedastic Data
Synthetic Data via Quantile Regression for Heavy-Tailed and ...
收藏 引用
international conference on privacy in statistical databases (psd)
作者: Pistner, Michelle Slavkovic, Aleksandra Vilhuber, Lars Penn State Univ Dept Stat University Pk PA 16802 USA Cornell Univ Econ Dept Ithaca NY 14853 USA
privacy protection of confidential data is a fundamental problem faced by many government organizations and research centers. It is further complicated when data have complex structures or variables with highly skewed... 详细信息
来源: 评论
Multiparty Computation with statistical Input Confidentiality via Randomized Response
Multiparty Computation with Statistical Input Confidentialit...
收藏 引用
international conference on privacy in statistical databases (psd)
作者: Domingo-Ferrer, Josep Mulero-Vellido, Rafael Soria-Comas, Jordi Univ Rovira & Virgili CYBERCAT Ctr Cybersecur Res Catalonia Dept Comp Sci & Math UNESCO Chair Data Privacy Av Paisos Catalans 26 Tarragona 43007 Catalonia Spain
We explore a setting in which a number of subjects want to compute on their pooled data while keeping the statistical confidentiality of their input. statistical confidentiality is different from the cryptographic con... 详细信息
来源: 评论
On the privacy Guarantees of Synthetic Data: A Reassessment from the Maximum-Knowledge Attacker Perspective
On the Privacy Guarantees of Synthetic Data: A Reassessment ...
收藏 引用
international conference on privacy in statistical databases (psd)
作者: Ruiz, Nicolas Muralidhar, Krishnamurty Domingo-Ferrer, Josep Univ Rovira & Virgili CYBERCAT Ctr Cybersecur Res Catalonia Dept Comp Sci & Math UNESCO Chair Data Privacy Av Paisos Catalans 26 Tarragona 43007 Catalonia Spain Univ Oklahoma Price Coll Business Dept Mkt & Supply Chain Management 308 Brooks St Norman OK 73019 USA
Generating synthetic data for the dissemination of individual information in a privacy-preserving way is an approach that is often presented as superior to other statistical disclosure control techniques. The reason f... 详细信息
来源: 评论
pMSE Mechanism: Differentially Private Synthetic Data with Maximal Distributional Similarity
<i>pMSE</i> Mechanism: Differentially Private Synthetic Data...
收藏 引用
international conference on privacy in statistical databases (psd)
作者: Snoke, Joshua Slavkovic, Aleksandra Penn State Univ Dept Stat University Pk PA 16802 USA
We propose a method for the release of differentially private synthetic datasets. In many contexts, data contain sensitive values which cannot be released in their original form in order to protect individuals' pr... 详细信息
来源: 评论
Symmetric vs Asymmetric Protection Levels in SDC Methods for Tabular Data
Symmetric vs Asymmetric Protection Levels in SDC Methods for...
收藏 引用
international conference on privacy in statistical databases (psd)
作者: Baena, Daniel Castro, Jordi Gonzalez, Jose A. Univ Politecn Cataluna Dept Stat & Operat Res Jordi Girona 1-3 Barcelona 08034 Catalonia Spain
Protection levels on sensitive cells-which are key parameters of any statistical disclosure control method for tabular data-are related to the difficulty of any attacker to recompute a good estimation of the true cell... 详细信息
来源: 评论
Quantifying the Protection Level of a Noise Candidate for Noise Multiplication Masking Scheme
Quantifying the Protection Level of a Noise Candidate for No...
收藏 引用
international conference on privacy in statistical databases (psd)
作者: Ma, Yue Lin, Yan-Xia Krivitsky, Pavel N. Wakefield, Bradley Univ Wollongong Sch Math & Appl Stat Natl Inst Appl Stat Res Australia Wollongong NSW 2500 Australia
When multiplicative noises are used to perturb a set of original data, the data provider needs to ensure that the original values are not likely to be learned by data intruders from the noise-multiplied data. Differen... 详细信息
来源: 评论