咨询与建议

限定检索结果

文献类型

  • 849 篇 会议
  • 18 篇 期刊文献
  • 5 册 图书

馆藏范围

  • 872 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 562 篇 工学
    • 450 篇 计算机科学与技术...
    • 155 篇 软件工程
    • 99 篇 电气工程
    • 72 篇 控制科学与工程
    • 40 篇 信息与通信工程
    • 35 篇 机械工程
    • 21 篇 仪器科学与技术
    • 13 篇 生物医学工程(可授...
    • 9 篇 生物工程
    • 8 篇 化学工程与技术
    • 7 篇 光学工程
    • 6 篇 电子科学与技术(可...
    • 5 篇 建筑学
    • 5 篇 交通运输工程
    • 4 篇 材料科学与工程(可...
    • 4 篇 动力工程及工程热...
  • 162 篇 理学
    • 101 篇 数学
    • 64 篇 统计学(可授理学、...
    • 42 篇 物理学
    • 25 篇 系统科学
    • 13 篇 生物学
    • 7 篇 化学
  • 50 篇 管理学
    • 35 篇 管理科学与工程(可...
    • 15 篇 图书情报与档案管...
    • 6 篇 工商管理
  • 32 篇 医学
    • 24 篇 临床医学
    • 12 篇 基础医学(可授医学...
  • 6 篇 法学
    • 6 篇 社会学
  • 5 篇 教育学
    • 5 篇 教育学
  • 5 篇 文学
    • 4 篇 外国语言文学
  • 3 篇 农学
  • 3 篇 艺术学
  • 2 篇 经济学
  • 1 篇 军事学

主题

  • 275 篇 graphical models
  • 148 篇 probabilistic lo...
  • 92 篇 probabilistic gr...
  • 54 篇 bayesian methods
  • 47 篇 bayesian network...
  • 43 篇 hidden markov mo...
  • 39 篇 bayes methods
  • 32 篇 machine learning
  • 31 篇 random variables
  • 31 篇 uncertainty
  • 28 篇 computer science
  • 28 篇 data models
  • 27 篇 inference algori...
  • 27 篇 computational mo...
  • 26 篇 probabilistic gr...
  • 26 篇 semantics
  • 25 篇 predictive model...
  • 24 篇 belief propagati...
  • 24 篇 training
  • 23 篇 probability dist...

机构

  • 5 篇 eindhoven univ t...
  • 5 篇 stanford univ st...
  • 4 篇 university of gu...
  • 4 篇 university of pe...
  • 4 篇 sorbonne univers...
  • 4 篇 machine intellig...
  • 4 篇 university of ca...
  • 4 篇 university of tr...
  • 3 篇 alan turing inst...
  • 3 篇 department of el...
  • 3 篇 tsinghua univers...
  • 3 篇 cuny ny 10021 us...
  • 3 篇 univ lubeck inst...
  • 3 篇 kth royal instit...
  • 3 篇 department of co...
  • 2 篇 university of ot...
  • 2 篇 concordia
  • 2 篇 fudan univ sch c...
  • 2 篇 penn state univ ...
  • 2 篇 katholieke univ ...

作者

  • 9 篇 leray philippe
  • 6 篇 kersting kristia...
  • 5 篇 ramazzotti danie...
  • 5 篇 masegosa andres ...
  • 5 篇 cimiano philipp
  • 5 篇 chen chao
  • 4 篇 mario fedrizzi
  • 4 篇 lam wai
  • 4 篇 philippe leray
  • 4 篇 xiang yang
  • 4 篇 giulianella cole...
  • 4 篇 yu xiaofeng
  • 4 篇 salvatore greco
  • 4 篇 peharz robert
  • 4 篇 bernadette bouch...
  • 4 篇 benedetto matara...
  • 4 篇 ronald r. yager
  • 4 篇 bielza concha
  • 4 篇 getoor lise
  • 4 篇 t.s. huang

语言

  • 867 篇 英文
  • 4 篇 其他
  • 1 篇 中文
检索条件"任意字段=International Conference on Probabilistic Graphical Models"
872 条 记 录,以下是91-100 订阅
排序:
A Framework Based on graphical models with Logic for Chinese Named Entity Recognition  3
A Framework Based on Graphical Models with Logic for Chinese...
收藏 引用
3rd international Joint conference on Natural Language Processing, IJCNLP 2008
作者: Yu, Xiaofeng Lam, Wai Chan, Shing-Kit Information Systems Laboratory Department of Systems Engineering and Engineering Management Chinese University of Hong Kong Shatin N.T. Hong Kong
Chinese named entity recognition (NER) has recently been viewed as a classification or sequence labeling problem, and many approaches have been proposed. However, they tend to address this problem without considering ... 详细信息
来源: 评论
Serving MPE Queries on Tensor Networks by Computing Derivatives  12
Serving MPE Queries on Tensor Networks by Computing Derivati...
收藏 引用
12th international conference on probabilistic graphical models (PGM)
作者: Wenig, Maurice Barschel, Hanno Giesen, Joachim Goral, Andreas Blacher, Mark Friedrich Schiller Univ Jena Jena Germany
Recently, tensor networks have been proposed as a data structure for weighted model counting. Computing a weighted model count is thus reduced to contracting a factorized tensor expression. Inference queries on graphi... 详细信息
来源: 评论
graphical probabilistic modeling and applications in multimedia content analysis  11
Graphical probabilistic modeling and applications in multime...
收藏 引用
19th ACM international conference on Multimedia ACM Multimedia 2011, MM'11
作者: Zhang, Xiao-Ping Liu, Zhu Ryerson University Toronto Canada ATandT Labs - Research Middletown NJ United States
graphical probabilistic models play an important role in modern machine learning and pattern recognition. In this half-day tutorial, we introduce the fundamentals of graphical probabilistic modeling, including Bayesia... 详细信息
来源: 评论
Protein Secondary Structure Prediction using Large Margin Methods
Protein Secondary Structure Prediction using Large Margin Me...
收藏 引用
8th IEEE/ACIS international conference on Computer and Information Science
作者: Tang, Buzhou Wang, Xuan Wang, Xiaolong Harbin Inst Technol Shenzhen Grad Sch Shenzhen 518055 Peoples R China
Protein secondary structure prediction is an important step to understanding protein tertiary structure. Recent studies indicate that the correlation between neighboring secondary structures are beneficial to improve ... 详细信息
来源: 评论
Mining relationship between video concepts using probabilistic graphical models
Mining relationship between video concepts using probabilist...
收藏 引用
IEEE international conference on Multimedia and Expo (ICME 2006)
作者: Yan, Rong Chen, Ming-yu Hauptmann, Alexander Carnegie Mellon Univ Sch Comp Sci Pittsburgh PA 15213 USA
For large scale automatic semantic video characterization, it is necessary to learn and model a large number of semantic concepts. These semantic concepts do not exist in isolation to each other and exploiting this re... 详细信息
来源: 评论
Automated probabilistic Modeling for Relational Data  13
Automated Probabilistic Modeling for Relational Data
收藏 引用
22nd ACM international conference on Information and Knowledge Management (CIKM)
作者: Singh, Sameer Graepel, Thore Univ Massachusetts Sch Comp Sci Amherst MA 01003 USA Microsoft Res Cambridge England
probabilistic graphical model representations of relational data provide a number of desired features, such as inference of missing values, detection of errors, visualization of data, and probabilistic answers to rela... 详细信息
来源: 评论
Efficient Heuristic Search for M-Modes Inference  10
Efficient Heuristic Search for M-Modes Inference
收藏 引用
10th international conference on probabilistic graphical models (PGM)
作者: Chen, Cong Yuan, Changhe Chen, Chao CUNY New York NY 10021 USA SUNY Stony Brook Stony Brook NY 11794 USA
M-Modes is the problem of finding the top M locally optimal solutions of a graphical model, called modes. These modes provide geometric characterization of the energy landscape of a graphical model and lead to high qu... 详细信息
来源: 评论
A Unified probabilistic graphical Model based Approach for the Robust Decoding of Color Structured Light Pattern  4
A Unified Probabilistic Graphical Model based Approach for t...
收藏 引用
4th IEEE international conference on Information Science and Technology (ICIST)
作者: Yang, Chao Liu, Fang Song, Zhan Chinese Univ Hong Kong Chinese Acad Sci Shenzhen Inst Adv Technol Shenzhen Guangdong Peoples R China China Air Force Logist Coll Dept Aviat Ammunit Xuzhou Jiangsu Peoples R China
Color coding is an important research topic in spatial encoded structured light sensing (SLS). In this study, we propose a novel graphical model based approach for the color pattern decoding task. For efficient color ... 详细信息
来源: 评论
Encoding probabilistic graphical models into Stochastic Boolean Satisfiability  31
Encoding Probabilistic Graphical Models into Stochastic Bool...
收藏 引用
31st international Joint conference on Artificial Intelligence (IJCAI)
作者: Hsieh, Cheng-Han Jiang, Jie-Hong R. Natl Taiwan Univ Grad Inst Elect Engn Taipei Taiwan Natl Taiwan Univ Dept Elect Engn Taipei Taiwan
Statistical inference is a powerful technique in various applications. Although many statistical inference tools are available, answering inference queries involving complex quantification structures remains challengi... 详细信息
来源: 评论
probabilistic graphical models and Deep Belief Networks for Prognosis of Breast Cancer  14
Probabilistic Graphical Models and Deep Belief Networks for ...
收藏 引用
IEEE 14th international conference on Machine Learning and Applications ICMLA
作者: Khademi, Mahmoud Nedialkov, Nedialko S. McMaster Univ Dept Comp & Software Hamilton ON Canada
We propose a probabilistic graphical model (PGM) for prognosis and diagnosis of breast cancer. PGMs are suitable for building predictive models in medical applications, as they are powerful tools for making decisions ... 详细信息
来源: 评论