咨询与建议

限定检索结果

文献类型

  • 849 篇 会议
  • 18 篇 期刊文献
  • 5 册 图书

馆藏范围

  • 872 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 562 篇 工学
    • 450 篇 计算机科学与技术...
    • 155 篇 软件工程
    • 99 篇 电气工程
    • 72 篇 控制科学与工程
    • 40 篇 信息与通信工程
    • 35 篇 机械工程
    • 21 篇 仪器科学与技术
    • 13 篇 生物医学工程(可授...
    • 9 篇 生物工程
    • 8 篇 化学工程与技术
    • 7 篇 光学工程
    • 6 篇 电子科学与技术(可...
    • 5 篇 建筑学
    • 5 篇 交通运输工程
    • 4 篇 材料科学与工程(可...
    • 4 篇 动力工程及工程热...
  • 162 篇 理学
    • 101 篇 数学
    • 64 篇 统计学(可授理学、...
    • 42 篇 物理学
    • 25 篇 系统科学
    • 13 篇 生物学
    • 7 篇 化学
  • 50 篇 管理学
    • 35 篇 管理科学与工程(可...
    • 15 篇 图书情报与档案管...
    • 6 篇 工商管理
  • 32 篇 医学
    • 24 篇 临床医学
    • 12 篇 基础医学(可授医学...
  • 6 篇 法学
    • 6 篇 社会学
  • 5 篇 教育学
    • 5 篇 教育学
  • 5 篇 文学
    • 4 篇 外国语言文学
  • 3 篇 农学
  • 3 篇 艺术学
  • 2 篇 经济学
  • 1 篇 军事学

主题

  • 275 篇 graphical models
  • 148 篇 probabilistic lo...
  • 92 篇 probabilistic gr...
  • 54 篇 bayesian methods
  • 47 篇 bayesian network...
  • 43 篇 hidden markov mo...
  • 39 篇 bayes methods
  • 32 篇 machine learning
  • 31 篇 random variables
  • 31 篇 uncertainty
  • 28 篇 computer science
  • 28 篇 data models
  • 27 篇 inference algori...
  • 27 篇 computational mo...
  • 26 篇 probabilistic gr...
  • 26 篇 semantics
  • 25 篇 predictive model...
  • 24 篇 belief propagati...
  • 24 篇 training
  • 23 篇 probability dist...

机构

  • 5 篇 eindhoven univ t...
  • 5 篇 stanford univ st...
  • 4 篇 university of gu...
  • 4 篇 university of pe...
  • 4 篇 sorbonne univers...
  • 4 篇 machine intellig...
  • 4 篇 university of ca...
  • 4 篇 university of tr...
  • 3 篇 alan turing inst...
  • 3 篇 department of el...
  • 3 篇 tsinghua univers...
  • 3 篇 cuny ny 10021 us...
  • 3 篇 univ lubeck inst...
  • 3 篇 kth royal instit...
  • 3 篇 department of co...
  • 2 篇 university of ot...
  • 2 篇 concordia
  • 2 篇 fudan univ sch c...
  • 2 篇 penn state univ ...
  • 2 篇 katholieke univ ...

作者

  • 9 篇 leray philippe
  • 6 篇 kersting kristia...
  • 5 篇 ramazzotti danie...
  • 5 篇 masegosa andres ...
  • 5 篇 cimiano philipp
  • 5 篇 chen chao
  • 4 篇 mario fedrizzi
  • 4 篇 lam wai
  • 4 篇 philippe leray
  • 4 篇 xiang yang
  • 4 篇 giulianella cole...
  • 4 篇 yu xiaofeng
  • 4 篇 salvatore greco
  • 4 篇 peharz robert
  • 4 篇 bernadette bouch...
  • 4 篇 benedetto matara...
  • 4 篇 ronald r. yager
  • 4 篇 bielza concha
  • 4 篇 getoor lise
  • 4 篇 t.s. huang

语言

  • 867 篇 英文
  • 4 篇 其他
  • 1 篇 中文
检索条件"任意字段=International Conference on Probabilistic Graphical Models"
872 条 记 录,以下是111-120 订阅
排序:
probabilistic graphical models AS TOOLS FOR EVALUATING THE IMPACT OF USAGE-CONTEXT ON THE ENVIRONMENTAL PERFORMANCE OF PRODUCTS
PROBABILISTIC GRAPHICAL MODELS AS TOOLS FOR EVALUATING THE I...
收藏 引用
ASME international Design Engineering Technical conferences/Computers Information in Engineering conference
作者: Telenko, Cassandra Seepersad, Carolyn Univ Texas Austin Dept Mech Engn Austin TX 78712 USA
Environmentally conscious design is focused on reducing the environmental impact of engineered systems, but common practice in life cycle analysis overlooks the relationship between a product's usage-context and i... 详细信息
来源: 评论
Background and perspectives of possibilistic graphical models  1st
Background and perspectives of possibilistic graphical model...
收藏 引用
1st international Joint conference on Qualitative and Quantitative Practical Reasoning (ECSQARU-FAPR 97)
作者: Gebhardt, J Kruse, R Tech Univ Carolo Wilhelmina Braunschweig Dept Math & Comp Sci D-38106 Braunschweig Germany Otto Von Guericke Univ Dept Comp Sci D-39106 Magdeburg Germany
graphical modelling is an important tool for the efficient representation and analysis of uncertain information in knowledge-based systems. While Bayesian networks and Markov networks from probabilistic graphical mode... 详细信息
来源: 评论
Bean Machine: A Declarative probabilistic Programming Language For Efficient Programmable Inference  10
Bean Machine: A Declarative Probabilistic Programming Langua...
收藏 引用
10th international conference on probabilistic graphical models (PGM)
作者: Tehrani, Nazanin Arora, Nimar S. Li, Yucen Lily Shah, Kinjal Divesh Noursi, David Tingley, Michael Torabi, Narjes Masouleh, Sepehr Lippert, Eric Meijer, Erik Facebook Inc Menlo Pk CA 94025 USA
A number of imperative probabilistic Programming Languages (PPLs) have been recently proposed, but the imperative style choice makes it very hard to deduce the dependence structure between the latent variables, which ... 详细信息
来源: 评论
The Dual PC Algorithm for Structure Learning  11
The Dual PC Algorithm for Structure Learning
收藏 引用
international conference on probabilistic graphical models
作者: Giudice, Enrico Kuipers, Jack Moffa, Giusi Univ Basel Dep Math & Comp Sci Basel Switzerland Swiss Fed Inst Technol Dep Biosyst Sci & Engn Basel Switzerland UCL Div Psychiat London England
Learning the graphical structure of Bayesian networks is key to describing data generating mechanisms in many complex applications and it poses considerable computational challenges. Observational data can only identi... 详细信息
来源: 评论
Structured Factored Inference for probabilistic Programming  21
Structured Factored Inference for Probabilistic Programming
收藏 引用
21st international conference on Artificial Intelligence and Statistics (AISTATS)
作者: Pfeffer, Avi Ruttenberg, Brian Kretschmer, William O'Connor, Alison Charles River Analyt Cambridge MA 02138 USA MIT Cambridge MA 02139 USA
probabilistic reasoning on complex real-world models is computationally challenging. Inference algorithms have been developed that work well on specific models or on parts of general models, but they require significa... 详细信息
来源: 评论
Kernel-Based Differentiable Learning of Non-Parametric Directed Acyclic graphical models  12
Kernel-Based Differentiable Learning of Non-Parametric Direc...
收藏 引用
12th international conference on probabilistic graphical models (PGM)
作者: Liang, Yurou Zadorozhnyi, Oleksandr Drton, Mathias Tech Univ Munich Munich Germany Munich Ctr Machine Learning Munich Germany
Causal discovery amounts to learning a directed acyclic graph (DAG) that encodes a causal model. This model selection problem can be challenging due to its large combinatorial search space, particularly when dealing w... 详细信息
来源: 评论
Bayesian network structure learning with causal effects in the presence of latent variables  10
Bayesian network structure learning with causal effects in t...
收藏 引用
10th international conference on probabilistic graphical models (PGM)
作者: Chobtham, Kiattikun Constantinou, Anthony C. Queen Mary Univ London Bayesian Artificial Intelligence Res Lab Risk & Informat Management Res Grp Sch Elect Engn & Comp Sci London England
Latent variables may lead to spurious relationships that can be misinterpreted as causal relationships. In Bayesian Networks (BNs), this challenge is known as learning under causal insufficiency. Structure learning al... 详细信息
来源: 评论
GRN model of probabilistic databases: Construction, transition and querying  10
GRN model of probabilistic databases: Construction, transiti...
收藏 引用
2010 international conference on Management of Data, SIGMOD '10
作者: Chen, Ruiwen Mao, Yongyi Kiringa, Iluju University of Ottawa Canada
Under the tuple-level uncertainty paradigm, we formalize the use of a novel graphical model, Generator-Recognizer Network (GRN), as a model of probabilistic databases. The GRN modeling framework is capable of represen... 详细信息
来源: 评论
A GENERAL BAYESIAN ALGORITHM FOR VISUAL OBJECT TRACKING BASED ON SPARSE FEATURES
A GENERAL BAYESIAN ALGORITHM FOR VISUAL OBJECT TRACKING BASE...
收藏 引用
IEEE international conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Soto, Mauricio Regazzoni, Carlo S. Univ Genoa Dept Biophys & Elect Engn Genoa Italy
This paper describes a Bayesian algorithm for rigid/non-rigid 2D visual object tracking based on sparse image features. The algorithm is inspired by the way human visual cortex segments and tracks different moving obj... 详细信息
来源: 评论
MAsCOT: Self-adaptive Opportunistic Offloading for Cloud-Enabled Smart Mobile Applications with probabilistic graphical models at Runtime  49
MAsCOT: Self-adaptive Opportunistic Offloading for Cloud-Ena...
收藏 引用
49th Hawaii international conference on System Sciences (HICSS)
作者: Naqvi, Nayyab Zia Devlieghere, Jonas Preuveneers, Davy Berbers, Yolande Katholieke Univ Leuven iMinds DistriNet Leuven Belgium
Although extensive progress has been made in Mobile Cloud Augmentation, automated decision support on the device that enables the opportunistic and intelligent use of cloud resources is missing. Furthermore, we need s... 详细信息
来源: 评论