咨询与建议

限定检索结果

文献类型

  • 849 篇 会议
  • 18 篇 期刊文献
  • 5 册 图书

馆藏范围

  • 872 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 562 篇 工学
    • 450 篇 计算机科学与技术...
    • 155 篇 软件工程
    • 99 篇 电气工程
    • 72 篇 控制科学与工程
    • 40 篇 信息与通信工程
    • 35 篇 机械工程
    • 21 篇 仪器科学与技术
    • 13 篇 生物医学工程(可授...
    • 9 篇 生物工程
    • 8 篇 化学工程与技术
    • 7 篇 光学工程
    • 6 篇 电子科学与技术(可...
    • 5 篇 建筑学
    • 5 篇 交通运输工程
    • 4 篇 材料科学与工程(可...
    • 4 篇 动力工程及工程热...
  • 162 篇 理学
    • 101 篇 数学
    • 64 篇 统计学(可授理学、...
    • 42 篇 物理学
    • 25 篇 系统科学
    • 13 篇 生物学
    • 7 篇 化学
  • 50 篇 管理学
    • 35 篇 管理科学与工程(可...
    • 15 篇 图书情报与档案管...
    • 6 篇 工商管理
  • 32 篇 医学
    • 24 篇 临床医学
    • 12 篇 基础医学(可授医学...
  • 6 篇 法学
    • 6 篇 社会学
  • 5 篇 教育学
    • 5 篇 教育学
  • 5 篇 文学
    • 4 篇 外国语言文学
  • 3 篇 农学
  • 3 篇 艺术学
  • 2 篇 经济学
  • 1 篇 军事学

主题

  • 275 篇 graphical models
  • 148 篇 probabilistic lo...
  • 92 篇 probabilistic gr...
  • 54 篇 bayesian methods
  • 47 篇 bayesian network...
  • 43 篇 hidden markov mo...
  • 39 篇 bayes methods
  • 32 篇 machine learning
  • 31 篇 random variables
  • 31 篇 uncertainty
  • 28 篇 computer science
  • 28 篇 data models
  • 27 篇 inference algori...
  • 27 篇 computational mo...
  • 26 篇 probabilistic gr...
  • 26 篇 semantics
  • 25 篇 predictive model...
  • 24 篇 belief propagati...
  • 24 篇 training
  • 23 篇 probability dist...

机构

  • 5 篇 eindhoven univ t...
  • 5 篇 stanford univ st...
  • 4 篇 university of gu...
  • 4 篇 university of pe...
  • 4 篇 sorbonne univers...
  • 4 篇 machine intellig...
  • 4 篇 university of ca...
  • 4 篇 university of tr...
  • 3 篇 alan turing inst...
  • 3 篇 department of el...
  • 3 篇 tsinghua univers...
  • 3 篇 cuny ny 10021 us...
  • 3 篇 univ lubeck inst...
  • 3 篇 kth royal instit...
  • 3 篇 department of co...
  • 2 篇 university of ot...
  • 2 篇 concordia
  • 2 篇 fudan univ sch c...
  • 2 篇 penn state univ ...
  • 2 篇 katholieke univ ...

作者

  • 9 篇 leray philippe
  • 6 篇 kersting kristia...
  • 5 篇 ramazzotti danie...
  • 5 篇 masegosa andres ...
  • 5 篇 cimiano philipp
  • 5 篇 chen chao
  • 4 篇 mario fedrizzi
  • 4 篇 lam wai
  • 4 篇 philippe leray
  • 4 篇 xiang yang
  • 4 篇 giulianella cole...
  • 4 篇 yu xiaofeng
  • 4 篇 salvatore greco
  • 4 篇 peharz robert
  • 4 篇 bernadette bouch...
  • 4 篇 benedetto matara...
  • 4 篇 ronald r. yager
  • 4 篇 bielza concha
  • 4 篇 getoor lise
  • 4 篇 t.s. huang

语言

  • 867 篇 英文
  • 4 篇 其他
  • 1 篇 中文
检索条件"任意字段=International Conference on Probabilistic Graphical Models"
872 条 记 录,以下是11-20 订阅
排序:
A Performance Comparison Between Machine Learning, Deep Learning, and Bayesian Approaches for COVID-19 Diagnosis
A Performance Comparison Between Machine Learning, Deep Lear...
收藏 引用
Artificial Intelligence and Data Engineering (AIDE), international conference on
作者: Alapati Naga Sree Vaishnavi Neha Lalitha Somesetty Challa Sai Muni Ganesh Reddy Danda Vamsi Chakradhar Vennampalli Venkateswarluu M. Srinivas Department of Computer Science Amrita Vishwa Vidyapeetham Amaravati India
The COVID-19 pandemic emphasizes the critical need for rapid and reliable diagnostic procedures to improve infection detection and prevention. This study compares Machine Learning (ML), Deep Learning(DL) and probabili... 详细信息
来源: 评论
20th international conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, IPMU 2024
20th International Conference on Information Processing and ...
收藏 引用
20th international conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, IPMU 2024
The proceedings contain 33 papers. The special focus in this conference is on Information Processing and Management of Uncertainty in Knowledge-Based Systems. The topics include: graphical Causal models with Disc...
来源: 评论
20th international conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, IPMU 2024
20th International Conference on Information Processing and ...
收藏 引用
20th international conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, IPMU 2024
The proceedings contain 33 papers. The special focus in this conference is on Information Processing and Management of Uncertainty in Knowledge-Based Systems. The topics include: graphical Causal models with Disc...
来源: 评论
Personalized Healthcare: Utilizing probabilistic models for Disease-Drug Association and Treatment Prediction
Personalized Healthcare: Utilizing Probabilistic Models for ...
收藏 引用
conference on Data Science and Machine Learning Applications (CDMA)
作者: Sarah Abed Alsubhi Mashael Al-Luhaybi Rawabi Abod ALlihyani Raghad Abdulaziz Alharbi Futun Salem Alharbi Batool Mohammed Alharbi Computer Science Department JUC Umm Al-Qura University Makkah Saudi Arabia
The current healthcare system faces challenges in delivering treatment recommendations personalized to individual patient needs, leading to issues such as misdiagnosis, delayed treatment plans, and harmful drug intera... 详细信息
来源: 评论
Special Issue on the Seventh probabilistic graphical models conference (PGM 2014)
收藏 引用
international JOURNAL OF APPROXIMATE REASONING 2016年 第Jan.期68卷 88-90页
作者: Renooij, Silja Univ Utrecht Dept Informat & Comp Sci Utrecht Netherlands
来源: 评论
international Workshop on Medical Computer Vision, MCV 2016, and of the international Workshop on Bayesian and graphical models for Biomedical Imaging, BAMBI 2016, held in conjunction with the 19th international conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2016
International Workshop on Medical Computer Vision, MCV 2016,...
收藏 引用
international Workshop on Medical Computer Vision, MCV 2016, and of the international Workshop on Bayesian and graphical models for Biomedical Imaging, BAMBI 2016, held in conjunction with the 19th international conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2016
The proceedings contain 19 papers. The special focus in this conference is on Medical Computer Vision. The topics include: Automated cortical parcellation and comparison with existing brain atlases;inferring disease s...
来源: 评论
aGrUM/pyAgrum : a Toolbox to Build models and Algorithms for probabilistic graphical models in Python  10
aGrUM/pyAgrum : a Toolbox to Build Models and Algorithms for...
收藏 引用
10th international conference on probabilistic graphical models (PGM)
作者: Ducamp, Gaspard Gonzales, Christophe Wuillemin, Pierre-Henri Sorbonne Univ LIP6 4 Pl Jussieu F-75005 Paris France Univ Toulon & Var Aix Marseille Univ CNRS LIS Marseille France
This paper presents the aGrUM framework, a LGPL C++ library providing state-of-the-art implementations of graphical models for decision making, including Bayesian Networks, Markov Networks (Markov random fields), Infl... 详细信息
来源: 评论
A Systematic Review on Hidden Markov models for Sentiment Analysis  15
A Systematic Review on Hidden Markov Models for Sentiment An...
收藏 引用
15th international conference on Electronics, Computer and Computation (ICECCO)
作者: Odumuyiwa, Victor Osisiogu, Ukachi Univ Lagos Dept Comp Sci Lagos Nigeria African Univ Sci & Technol Dept Comp Sci Abuja Nigeria
This paper gives a review of the literature on the application of Hidden Markov models in the field of sentiment analysis. This is done in relation to a research project on semantic representation and the use of proba... 详细信息
来源: 评论
Efficient computational strategies to learn the structure of probabilistic graphical models of cumulative phenomena
收藏 引用
JOURNAL OF COMPUTATIONAL SCIENCE 2019年 30卷 1-10页
作者: Ramazzotti, Daniele Nobile, Marco S. Antoniotti, Marco Graudenzi, Alex Stanford Univ Dept Pathol Stanford CA 94305 USA Univ Milano Bicocca Dept Informat Syst & Commun Milan Italy SYSBIO Ctr Syst Biol Milan Italy Univ Milano Bicocca Milan Ctr Neurosci Monza Italy
Structural learning of Bayesian Networks (BNs) is a NP-hard problem, which is further complicated by many theoretical issues, such as the I-equivalence among different structures. In this work, we focus on a specific ... 详细信息
来源: 评论
Constructing probabilistic models
收藏 引用
international JOURNAL OF MEDICAL INFORMATICS 1997年 第1-2期45卷 9-18页
作者: Jirousek, R Kushmerick, N AV CR INST INFORMAT & AUTOMAT PRAGUE CZECH REPUBLIC UNIV WASHINGTON DEPT COMP SCI SEATTLE WA 98195 USA
Bayesian networks have become one of the most popular probabilistic techniques in AI, largely due to the development of several efficient inference algorithms. In this paper we describe a heuristic method for construc... 详细信息
来源: 评论