咨询与建议

限定检索结果

文献类型

  • 849 篇 会议
  • 18 篇 期刊文献
  • 5 册 图书

馆藏范围

  • 872 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 562 篇 工学
    • 450 篇 计算机科学与技术...
    • 155 篇 软件工程
    • 99 篇 电气工程
    • 72 篇 控制科学与工程
    • 40 篇 信息与通信工程
    • 35 篇 机械工程
    • 21 篇 仪器科学与技术
    • 13 篇 生物医学工程(可授...
    • 9 篇 生物工程
    • 8 篇 化学工程与技术
    • 7 篇 光学工程
    • 6 篇 电子科学与技术(可...
    • 5 篇 建筑学
    • 5 篇 交通运输工程
    • 4 篇 材料科学与工程(可...
    • 4 篇 动力工程及工程热...
  • 162 篇 理学
    • 101 篇 数学
    • 64 篇 统计学(可授理学、...
    • 42 篇 物理学
    • 25 篇 系统科学
    • 13 篇 生物学
    • 7 篇 化学
  • 50 篇 管理学
    • 35 篇 管理科学与工程(可...
    • 15 篇 图书情报与档案管...
    • 6 篇 工商管理
  • 32 篇 医学
    • 24 篇 临床医学
    • 12 篇 基础医学(可授医学...
  • 6 篇 法学
    • 6 篇 社会学
  • 5 篇 教育学
    • 5 篇 教育学
  • 5 篇 文学
    • 4 篇 外国语言文学
  • 3 篇 农学
  • 3 篇 艺术学
  • 2 篇 经济学
  • 1 篇 军事学

主题

  • 275 篇 graphical models
  • 148 篇 probabilistic lo...
  • 92 篇 probabilistic gr...
  • 54 篇 bayesian methods
  • 47 篇 bayesian network...
  • 43 篇 hidden markov mo...
  • 39 篇 bayes methods
  • 32 篇 machine learning
  • 31 篇 random variables
  • 31 篇 uncertainty
  • 28 篇 computer science
  • 28 篇 data models
  • 27 篇 inference algori...
  • 27 篇 computational mo...
  • 26 篇 probabilistic gr...
  • 26 篇 semantics
  • 25 篇 predictive model...
  • 24 篇 belief propagati...
  • 24 篇 training
  • 23 篇 probability dist...

机构

  • 5 篇 eindhoven univ t...
  • 5 篇 stanford univ st...
  • 4 篇 university of gu...
  • 4 篇 university of pe...
  • 4 篇 sorbonne univers...
  • 4 篇 machine intellig...
  • 4 篇 university of ca...
  • 4 篇 university of tr...
  • 3 篇 alan turing inst...
  • 3 篇 department of el...
  • 3 篇 tsinghua univers...
  • 3 篇 cuny ny 10021 us...
  • 3 篇 univ lubeck inst...
  • 3 篇 kth royal instit...
  • 3 篇 department of co...
  • 2 篇 university of ot...
  • 2 篇 concordia
  • 2 篇 fudan univ sch c...
  • 2 篇 penn state univ ...
  • 2 篇 katholieke univ ...

作者

  • 9 篇 leray philippe
  • 6 篇 kersting kristia...
  • 5 篇 ramazzotti danie...
  • 5 篇 masegosa andres ...
  • 5 篇 cimiano philipp
  • 5 篇 chen chao
  • 4 篇 mario fedrizzi
  • 4 篇 lam wai
  • 4 篇 philippe leray
  • 4 篇 xiang yang
  • 4 篇 giulianella cole...
  • 4 篇 yu xiaofeng
  • 4 篇 salvatore greco
  • 4 篇 peharz robert
  • 4 篇 bernadette bouch...
  • 4 篇 benedetto matara...
  • 4 篇 ronald r. yager
  • 4 篇 bielza concha
  • 4 篇 getoor lise
  • 4 篇 t.s. huang

语言

  • 867 篇 英文
  • 4 篇 其他
  • 1 篇 中文
检索条件"任意字段=International Conference on Probabilistic Graphical Models"
872 条 记 录,以下是71-80 订阅
排序:
Overlapping Communities and Roles in Networks with Node Attributes: probabilistic graphical Modeling, Bayesian Formulation and Variational Inference  31
Overlapping Communities and Roles in Networks with Node Attr...
收藏 引用
31st international Joint conference on Artificial Intelligence (IJCAI)
作者: Costa, Gianni Ortale, Riccardo ICAR CNR Arcavacata Di Rende Italy
We study the seamless integration of community discovery and behavioral role analysis, in the domain of networks with node attributes. In particular, we focus on unifying the two tasks, by explicitly harnessing node a... 详细信息
来源: 评论
Developing probabilistic models for Identifying Semantic Patterns in Texts
Developing Probabilistic Models for Identifying Semantic Pat...
收藏 引用
5th Annual IEEE international conference on Semantic Computing (ICSC)
作者: Huang, Minhua Haralick, Robert M. CUNY Grad Sch Dept Comp Sci New York NY 10016 USA CUNY Univ Ctr New York NY 10016 USA
We present a probabilistic graphical model that finds a sequence of optimal categories for a sequence of input symbols. Based on this mode, three algorithms are developed for identifying semantic patterns in texts. Th... 详细信息
来源: 评论
Guided Open Story Generation Using probabilistic graphical models  19
Guided Open Story Generation Using Probabilistic Graphical M...
收藏 引用
14th international conference on the Foundations of Digital Games (FDG)
作者: Gandhi, Sagar Harrison, Brent Univ Kentucky Lexington KY 40506 USA Google Mountain View CA 94043 USA
In this work, we present an approach for performing computational storytelling in open domain based on Author Goals. Author Goals are constraints placed on a story event directed by the author of the system. There are... 详细信息
来源: 评论
STRUDEL: Learning Structured-Decomposable probabilistic Circuits  10
STRUDEL: Learning Structured-Decomposable Probabilistic Circ...
收藏 引用
10th international conference on probabilistic graphical models (PGM)
作者: Dang, Meihua Vergari, Antonio Van den Broeck, Guy Univ Calif Los Angeles Dept Comp Sci Los Angeles CA 90024 USA
probabilistic circuits (PCs) represent a probability distribution as a computational graph. Enforcing structural properties on these graphs guarantees that several inference scenarios become tractable. Among these pro... 详细信息
来源: 评论
A hybrid random field model for scalable statistical learning
收藏 引用
NEURAL NETWORKS 2009年 第5-6期22卷 603-613页
作者: Freno, A. Trentin, E. Gori, M. Univ Siena Dipartimento Ingn Informaz I-53100 Siena SI Italy
This paper introduces hybrid random fields, which are a class of probabilistic graphical models aimed at allowing for efficient Structure learning in high-dimensional domains. Hybrid random fields, along with the lear... 详细信息
来源: 评论
Hawkesian graphical Event models  10
Hawkesian Graphical Event Models
收藏 引用
10th international conference on probabilistic graphical models (PGM)
作者: Yu, Xiufan Shanmugam, Karthikeyan Bhattacharjya, Debarun Gao, Tian Subramanian, Dharmashankar Xue, Lingzhou Penn State Univ University Pk PA 16802 USA IBM Thomas J Watson Res Ctr Yorktown Hts NY USA
graphical event models (GEMs) provide a framework for graphical representation of multivariate point processes. We propose a class of GEMs named Hawkesian graphical event models (HGEMs) for representing temporal depen... 详细信息
来源: 评论
Document Image Matching Using probabilistic graphical models
Document Image Matching Using Probabilistic Graphical Models
收藏 引用
21st international conference on Pattern Recognition (ICPR)
作者: Liu, Li Lu, Yue Suen, Ching Y. East China Normal Univ Dept Comp Sci & Technol Shanghai Peoples R China Shanghai Res Inst SRI ECNU Joint Lab China Post Grp Shanghai Peoples R China Concordia Univ Ctr Pattern Recognit & Machine Intelligence Montreal PQ Canada
A document image matching approach making use of probabilistic graphical models is proposed. The document image is first represented by a tree with the nodes in the tree corresponding to the regions in the image and t... 详细信息
来源: 评论
OpenMarkov, an Open-Source Tool for probabilistic graphical models  28
OpenMarkov, an Open-Source Tool for Probabilistic Graphical ...
收藏 引用
28th international Joint conference on Artificial Intelligence
作者: Arias, Manuel Perez-Martin, Jorge Luque, Manuel Diez, Francisco J. Univ Nacl Educ Distancia UNED Madrid Spain
OpenMarkov is a Java open-source tool for building and evaluating probabilistic graphical models, including Bayesian networks, influence diagrams, and some Markov models. With more than 100,000 lines of code, it offer...
来源: 评论
graphical models FOR RELATIONS Modeling Relational Context
GRAPHICAL MODELS FOR RELATIONS <i>Modeling Relational Contex...
收藏 引用
international conference on Knowledge Discovery and Information Retrieval
作者: Tresp, Volker Huang, Yi Jiang, Xueyan Rettinger, Achim Siemens AG Corp Technol Munich Germany Ludwig Maximilians Univ Munchen Munich Germany Karlsruhe Inst Technol Karlsruhe Germany
We derive a multinomial sampling model for analyzing the relationships between two or more entities, The parameters in the multinomial model are derived from factorizing multi-way contingency tables. We show how conte... 详细信息
来源: 评论
A TWO-WAY APPROACH FOR probabilistic graphical models STRUCTURE LEARNING AND ONTOLOGY ENRICHMENT
A TWO-WAY APPROACH FOR PROBABILISTIC GRAPHICAL MODELS STRUCT...
收藏 引用
international conference on Knowledge Engineering and Ontology Development
作者: Ben Ishak, Mouna Leray, Philippe Ben Amor, Nahla Univ Tunis LARODEC Lab ISG Tunis 2000 Tunisia Polytech Nantes Knowledge & Decis Team LINA Lab UMR 6241 Nantes France
Ontologies and probabilistic graphical models are considered within the most efficient frameworks in knowledge representation. Ontologies are the key concept in semantic technology whose use is increasingly prevalent ... 详细信息
来源: 评论