咨询与建议

限定检索结果

文献类型

  • 849 篇 会议
  • 18 篇 期刊文献
  • 5 册 图书

馆藏范围

  • 872 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 562 篇 工学
    • 450 篇 计算机科学与技术...
    • 155 篇 软件工程
    • 99 篇 电气工程
    • 72 篇 控制科学与工程
    • 40 篇 信息与通信工程
    • 35 篇 机械工程
    • 21 篇 仪器科学与技术
    • 13 篇 生物医学工程(可授...
    • 9 篇 生物工程
    • 8 篇 化学工程与技术
    • 7 篇 光学工程
    • 6 篇 电子科学与技术(可...
    • 5 篇 建筑学
    • 5 篇 交通运输工程
    • 4 篇 材料科学与工程(可...
    • 4 篇 动力工程及工程热...
  • 162 篇 理学
    • 101 篇 数学
    • 64 篇 统计学(可授理学、...
    • 42 篇 物理学
    • 25 篇 系统科学
    • 13 篇 生物学
    • 7 篇 化学
  • 50 篇 管理学
    • 35 篇 管理科学与工程(可...
    • 15 篇 图书情报与档案管...
    • 6 篇 工商管理
  • 32 篇 医学
    • 24 篇 临床医学
    • 12 篇 基础医学(可授医学...
  • 6 篇 法学
    • 6 篇 社会学
  • 5 篇 教育学
    • 5 篇 教育学
  • 5 篇 文学
    • 4 篇 外国语言文学
  • 3 篇 农学
  • 3 篇 艺术学
  • 2 篇 经济学
  • 1 篇 军事学

主题

  • 275 篇 graphical models
  • 148 篇 probabilistic lo...
  • 92 篇 probabilistic gr...
  • 54 篇 bayesian methods
  • 47 篇 bayesian network...
  • 43 篇 hidden markov mo...
  • 39 篇 bayes methods
  • 32 篇 machine learning
  • 31 篇 random variables
  • 31 篇 uncertainty
  • 28 篇 computer science
  • 28 篇 data models
  • 27 篇 inference algori...
  • 27 篇 computational mo...
  • 26 篇 probabilistic gr...
  • 26 篇 semantics
  • 25 篇 predictive model...
  • 24 篇 belief propagati...
  • 24 篇 training
  • 23 篇 probability dist...

机构

  • 5 篇 eindhoven univ t...
  • 5 篇 stanford univ st...
  • 4 篇 university of gu...
  • 4 篇 university of pe...
  • 4 篇 sorbonne univers...
  • 4 篇 machine intellig...
  • 4 篇 university of ca...
  • 4 篇 university of tr...
  • 3 篇 alan turing inst...
  • 3 篇 department of el...
  • 3 篇 tsinghua univers...
  • 3 篇 cuny ny 10021 us...
  • 3 篇 univ lubeck inst...
  • 3 篇 kth royal instit...
  • 3 篇 department of co...
  • 2 篇 university of ot...
  • 2 篇 concordia
  • 2 篇 fudan univ sch c...
  • 2 篇 penn state univ ...
  • 2 篇 katholieke univ ...

作者

  • 9 篇 leray philippe
  • 6 篇 kersting kristia...
  • 5 篇 ramazzotti danie...
  • 5 篇 masegosa andres ...
  • 5 篇 cimiano philipp
  • 5 篇 chen chao
  • 4 篇 mario fedrizzi
  • 4 篇 lam wai
  • 4 篇 philippe leray
  • 4 篇 xiang yang
  • 4 篇 giulianella cole...
  • 4 篇 yu xiaofeng
  • 4 篇 salvatore greco
  • 4 篇 peharz robert
  • 4 篇 bernadette bouch...
  • 4 篇 benedetto matara...
  • 4 篇 ronald r. yager
  • 4 篇 bielza concha
  • 4 篇 getoor lise
  • 4 篇 t.s. huang

语言

  • 867 篇 英文
  • 4 篇 其他
  • 1 篇 中文
检索条件"任意字段=International Conference on Probabilistic Graphical Models"
872 条 记 录,以下是81-90 订阅
排序:
Hierarchical graphical models for Context-Aware Hybrid Brain-Machine Interfaces  40
Hierarchical Graphical Models for Context-Aware Hybrid Brain...
收藏 引用
40th Annual international conference of the IEEE-Engineering-in-Medicine-and-Biology-Society (EMBC)
作者: Ozdenizci, Ozan Gunay, Sezen Yagmur Quivira, Fernando Erdogmus, Deniz Northeastern Univ Dept Elect & Comp Engn Cognit Syst Lab Boston MA 02115 USA
We present a novel hierarchical graphical model based context-aware hybrid brain-machine interface (hBMI) using probabilistic fusion of electroencephalographic (EEG) and electromyographic (EMG) activities. Based on ex... 详细信息
来源: 评论
PGM PyLib: A Toolkit for probabilistic graphical models in Python  10
PGM PyLib: A Toolkit for Probabilistic Graphical Models in P...
收藏 引用
10th international conference on probabilistic graphical models, PGM 2020
作者: Serrano-Pérez, Jonathan Sucar, L. Enrique Instituto Nacional de Astrofísica Óptica y Electrónica Puebla Mexico
PGM PyLib is a toolkit that contains a wide range of probabilistic graphical models algorithms implemented in Python, and serves as a companion of the book probabilistic graphical models: Principles and Applications. ... 详细信息
来源: 评论
Sum-Product Network Decompilation  10
Sum-Product Network Decompilation
收藏 引用
10th international conference on probabilistic graphical models (PGM)
作者: Butz, Cory J. Oliveira, Jhonatan S. Peharz, Robert Univ Regina Regina SK Canada Eindhoven Univ Technol Eindhoven Netherlands Univ Cambridge Cambridge England
There exists a dichotomy between classical probabilistic graphical models, such as Bayesian networks (BNs), and modern tractable models, such as sum-product networks (SPNs). The former generally have intractable infer... 详细信息
来源: 评论
Hybrid Correlational graphical models for Reasoning in Detecting Systems
Hybrid Correlational Graphical Models for Reasoning in Detec...
收藏 引用
IEEE 24th international conference on Tools with Artificial Intelligence (ICTAI)
作者: Shi, Dongyu Xu, Sufang E China Normal Univ Dept Comp Sci & Technol Shanghai 200241 Peoples R China
Using probabilistic graphical models to deal with uncertainties by modeling relationships among detecting objects is a common method for event detecting systems. However, not all relations are captured accurately by f... 详细信息
来源: 评论
Automatic Annotation Extension and Classification of Documents Using a probabilistic graphical Model  13
Automatic Annotation Extension and Classification of Documen...
收藏 引用
13th IAPR international conference on Document Analysis and Recognition (ICDAR)
作者: Bouzaieni, Abdessalem Barrat, Sabine Tabbone, Salvatore Univ Lorraine LORIA XILOPIX Vandoeuvre Les Nancy France Univ Tours Comp Sci Lab Tours France Univ Lorraine LORIA Vandoeuvre Les Nancy France
With the fast growth of document images, document annotation has become a research area of great interest. Annotation allows to describe the semantic content of documents and facilitates their use and research. Howeve... 详细信息
来源: 评论
A Framework Based on graphical models with Logic for Chinese Named Entity Recognition  3
A Framework Based on Graphical Models with Logic for Chinese...
收藏 引用
3rd international Joint conference on Natural Language Processing, IJCNLP 2008
作者: Yu, Xiaofeng Lam, Wai Chan, Shing-Kit Information Systems Laboratory Department of Systems Engineering and Engineering Management Chinese University of Hong Kong Shatin N.T. Hong Kong
Chinese named entity recognition (NER) has recently been viewed as a classification or sequence labeling problem, and many approaches have been proposed. However, they tend to address this problem without considering ... 详细信息
来源: 评论
Joint Entity Recognition and Linking in Technical Domains Using Undirected probabilistic graphical models  1
收藏 引用
1st international conference on Language, Data and Knowledge (LDK)
作者: ter Horst, Hendrik Hartung, Matthias Cimiano, Philipp Bielefeld Univ Semant Comp Grp Cognit Interact Technol Cluster Excellence CITEC Bielefeld Germany
The problems of recognizing mentions of entities in texts and linking them to unique knowledge base identifiers have received considerable attention in recent years. In this paper we present a probabilistic system bas... 详细信息
来源: 评论
Protein Secondary Structure Prediction using Large Margin Methods
Protein Secondary Structure Prediction using Large Margin Me...
收藏 引用
8th IEEE/ACIS international conference on Computer and Information Science
作者: Tang, Buzhou Wang, Xuan Wang, Xiaolong Harbin Inst Technol Shenzhen Grad Sch Shenzhen 518055 Peoples R China
Protein secondary structure prediction is an important step to understanding protein tertiary structure. Recent studies indicate that the correlation between neighboring secondary structures are beneficial to improve ... 详细信息
来源: 评论
probabilistic Model-Building Genetic Algorithms  12
Probabilistic Model-Building Genetic Algorithms
收藏 引用
14th international conference on Genetic and Evolutionary Computation conference (GECCO)
作者: Pelikan, Martin Univ Missouri Dept Math & Comp Sci MEDAL St Louis MO 63121 USA
probabilistic model-building genetic algorithms (PMBGAs), also known as estimation of distribution algorithms (EDAs) and iterated density-estimation algorithms (IDEAs), guide the search for the optimum by building and... 详细信息
来源: 评论
Learning the Features ignored by Classification models using Staged Modeling Variational Autoencoder
Learning the Features ignored by Classification Models using...
收藏 引用
international Joint conference on Neural Networks (IJCNN)
作者: Ruan, Zhihui Zhang, Jianwei South China Univ Technol Sch Comp Sci & Engn Guangzhou Peoples R China
Classification networks usually only save the specified factor associated with labels. We propose a probabilistic graphical model (PGM) to learn the features ignored by arbitrary classification networks using staged m... 详细信息
来源: 评论