咨询与建议

限定检索结果

文献类型

  • 802 篇 会议
  • 152 篇 期刊文献
  • 57 册 图书
  • 4 篇 学位论文
  • 1 篇 科技报告

馆藏范围

  • 1,016 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 617 篇 工学
    • 411 篇 计算机科学与技术...
    • 237 篇 软件工程
    • 143 篇 电气工程
    • 89 篇 测绘科学与技术
    • 77 篇 光学工程
    • 68 篇 控制科学与工程
    • 52 篇 信息与通信工程
    • 44 篇 机械工程
    • 44 篇 仪器科学与技术
    • 28 篇 电子科学与技术(可...
    • 18 篇 生物医学工程(可授...
    • 14 篇 生物工程
    • 8 篇 化学工程与技术
    • 6 篇 建筑学
    • 5 篇 交通运输工程
    • 5 篇 航空宇航科学与技...
    • 4 篇 安全科学与工程
  • 315 篇 理学
    • 163 篇 物理学
    • 96 篇 数学
    • 92 篇 生物学
    • 32 篇 统计学(可授理学、...
    • 17 篇 系统科学
    • 7 篇 化学
    • 5 篇 地球物理学
  • 187 篇 医学
    • 183 篇 临床医学
    • 8 篇 基础医学(可授医学...
    • 6 篇 特种医学
  • 73 篇 管理学
    • 44 篇 管理科学与工程(可...
    • 29 篇 图书情报与档案管...
  • 30 篇 艺术学
    • 29 篇 设计学(可授艺术学...
  • 5 篇 农学
  • 3 篇 教育学
  • 2 篇 法学

主题

  • 384 篇 computer vision
  • 251 篇 pattern recognit...
  • 81 篇 layout
  • 71 篇 cameras
  • 67 篇 object detection
  • 67 篇 image segmentati...
  • 67 篇 robustness
  • 59 篇 image processing
  • 58 篇 shape
  • 57 篇 humans
  • 55 篇 object recogniti...
  • 49 篇 face recognition
  • 49 篇 feature extracti...
  • 44 篇 application soft...
  • 43 篇 machine vision
  • 41 篇 computer science
  • 41 篇 stereo vision
  • 38 篇 artificial intel...
  • 38 篇 image processing...
  • 35 篇 face detection

机构

  • 15 篇 huazhong univ sc...
  • 13 篇 chinese acad sci...
  • 9 篇 national laborat...
  • 9 篇 institute for pa...
  • 7 篇 computer vision ...
  • 6 篇 microsoft resear...
  • 6 篇 national laborat...
  • 6 篇 institute for co...
  • 4 篇 robotics institu...
  • 4 篇 huazhong univ sc...
  • 4 篇 huazhong univ sc...
  • 4 篇 univ technol syd...
  • 4 篇 wuhan univ state...
  • 4 篇 institute for co...
  • 4 篇 computer vision ...
  • 3 篇 national lab. of...
  • 3 篇 lund university
  • 3 篇 univ chinese aca...
  • 3 篇 univ technol syd...
  • 3 篇 faculty of infor...

作者

  • 18 篇 tan tieniu
  • 16 篇 tao dacheng
  • 15 篇 sang nong
  • 12 篇 huang kaiqi
  • 11 篇 tieniu tan
  • 9 篇 zhang tianxu
  • 9 篇 tian jinwen
  • 8 篇 cao zhiguo
  • 8 篇 zhu song-chun
  • 8 篇 he xiangjian
  • 7 篇 kaiqi huang
  • 7 篇 li dehua
  • 7 篇 wu qiang
  • 6 篇 ding mingyue
  • 6 篇 horst bischof
  • 5 篇 cordelia schmid
  • 5 篇 sun zhenan
  • 5 篇 li xuelong
  • 5 篇 u. pal
  • 5 篇 mubarak shah

语言

  • 977 篇 英文
  • 30 篇 中文
  • 10 篇 其他
检索条件"任意字段=MIPPR 2007: Pattern Recognition and Computer Vision"
1016 条 记 录,以下是581-590 订阅
排序:
Fusion of Face and Palmprint for Personal Identification Based on Ordinal Features
Fusion of Face and Palmprint for Personal Identification Bas...
收藏 引用
Conference on computer vision and pattern recognition (CVPR)
作者: Rufeng Chu Shengcai Liao Yufei Han Zhenan Sun Stan Z. Li Tieniu Tan Center for Biometrics and Security Research & National Laboratory of Pattern Recognition Institute of Automation Chinese Academy and Sciences China
In this paper, we present a face and palmprint multimodal biometric identification method and system to improve the identification performance. Effective classifiers based on ordinal features are constructed for faces... 详细信息
来源: 评论
Semi-supervised Learning on Semantic Manifold for Event Analysis in Dynamic Scenes
Semi-supervised Learning on Semantic Manifold for Event Anal...
收藏 引用
Conference on computer vision and pattern recognition (CVPR)
作者: Lun Xin Tieniu Tan National Laboratory or Pattern Recognition Institute of Automation Chinese Academy and Sciences Beijing China
Events can be considered as obvious changes of important properties with semantic meanings. Usually, all these properties are measurable and continual in complex formats and higher dimensions. It is hard to define and... 详细信息
来源: 评论
A Human Action recognition System for Embedded computer vision Application
A Human Action Recognition System for Embedded Computer Visi...
收藏 引用
Conference on computer vision and pattern recognition (CVPR)
作者: Hongying Meng Nick Pears Chris Bailey Department of Computer Science University of York Heslington Yorkshire UK
In this paper, we propose a human action recognition system suitable for embedded computer vision applications in security systems, human-computer interaction and intelligent environments. Our system is suitable for e... 详细信息
来源: 评论
Deformable Surface Tracking Ambiguities
Deformable Surface Tracking Ambiguities
收藏 引用
Conference on computer vision and pattern recognition (CVPR)
作者: Mathieu Salzmann Vincent Lepetit Pascal Fua Computer Vision Laboratory École Polytechnique Fédérale de Lausanne Lausanne Switzerland
We study from a theoretical standpoint the ambiguities that occur when tracking a generic deformable surface under monocular perspective projection given 3D to 2D correspondences. We show that, additionally to the kno... 详细信息
来源: 评论
A Bayesian Non-Gaussian Mixture Analysis: Application to Eye Modeling
A Bayesian Non-Gaussian Mixture Analysis: Application to Eye...
收藏 引用
Conference on computer vision and pattern recognition (CVPR)
作者: Nizar Bouguila Djemel Ziou Riad I. Hammoud CIISE Concordia University Montreal QUE Canada DI Université de Sherbrook Sherbrooke QUE Canada Adv. Control & Security Delphi Electronics and Safety Kokomo IN USA
Many computer vision and pattern recognition problems involve the use of finite Gaussian mixture models. Finite mixture model using generalized Dirichlet distribution has been shown as a robust alternative of normal m... 详细信息
来源: 评论
Fast Keypoint recognition in Ten Lines of Code
Fast Keypoint Recognition in Ten Lines of Code
收藏 引用
Conference on computer vision and pattern recognition (CVPR)
作者: Mustafa Ozuysal Pascal Fua Vincent Lepetit Computer Vision Laboratory École Polytechnique Féderal de Lausanne Lausanne Switzerland
While feature point recognition is a key component of modern approaches to object detection, existing approaches require computationally expensive patch preprocessing to handle perspective distortion. In this paper, w... 详细信息
来源: 评论
Online Learning Asymmetric Boosted Classifiers for Object Detection
Online Learning Asymmetric Boosted Classifiers for Object De...
收藏 引用
Conference on computer vision and pattern recognition (CVPR)
作者: Minh-Tri Pham Tat-Jen Cham School of Computer Engineering Nanyang Technological University Singapore
We present an integrated framework for learning asymmetric boosted classifiers and online learning to address the problem of online learning asymmetric boosted classifiers, which is applicable to object detection prob... 详细信息
来源: 评论
Human Activity recognition Based on R Transform
Human Activity Recognition Based on R Transform
收藏 引用
Conference on computer vision and pattern recognition (CVPR)
作者: Ying Wang Kaiqi Huang Tieniu Tan National Laboratory of Pattern Recognition Institute of Automation Chinese Academy and Sciences Beijing China
This paper addresses human activity recognition based on a new feature descriptor. For a binary human silhouette, an extended radon transform, R transform, is employed to represent low-level features. The advantage of... 详细信息
来源: 评论
Online Appearance Model Learning for Video-Based Face recognition
Online Appearance Model Learning for Video-Based Face Recogn...
收藏 引用
Conference on computer vision and pattern recognition (CVPR)
作者: Liang Liu Yunhong Wang Tieniu Tan National Laboratory of Pattern Recognition Institute of Automation Chinese Academy and Sciences Beijing China School of Computer Science and Engineering Beihang University Beijing China
In this paper, we propose a novel online learning method which can learn appearance models incrementally from a given video stream. The data of each frame in the video can be discarded as soon as it has been processed... 详细信息
来源: 评论
Flexible Object Models for Category-Level 3D Object recognition
Flexible Object Models for Category-Level 3D Object Recognit...
收藏 引用
Conference on computer vision and pattern recognition (CVPR)
作者: Akash Kushal Cordelia Schmid Jean Ponce Computer Science Department and Beckman Institute University of Illinois Urbana-Champaign USA Lear Team INRIA Montbonnot France
Today's category-level object recognition systems largely focus on fronto-parallel views of objects with characteristic texture patterns. To overcome these limitations, we propose a novel framework for visual obje... 详细信息
来源: 评论