咨询与建议

限定检索结果

文献类型

  • 802 篇 会议
  • 152 篇 期刊文献
  • 56 册 图书
  • 4 篇 学位论文
  • 1 篇 科技报告

馆藏范围

  • 1,015 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 616 篇 工学
    • 411 篇 计算机科学与技术...
    • 237 篇 软件工程
    • 143 篇 电气工程
    • 89 篇 测绘科学与技术
    • 77 篇 光学工程
    • 68 篇 控制科学与工程
    • 52 篇 信息与通信工程
    • 44 篇 机械工程
    • 43 篇 仪器科学与技术
    • 28 篇 电子科学与技术(可...
    • 18 篇 生物医学工程(可授...
    • 14 篇 生物工程
    • 8 篇 化学工程与技术
    • 6 篇 建筑学
    • 5 篇 交通运输工程
    • 5 篇 航空宇航科学与技...
    • 4 篇 安全科学与工程
  • 314 篇 理学
    • 163 篇 物理学
    • 96 篇 数学
    • 92 篇 生物学
    • 32 篇 统计学(可授理学、...
    • 16 篇 系统科学
    • 7 篇 化学
    • 5 篇 地球物理学
  • 187 篇 医学
    • 183 篇 临床医学
    • 8 篇 基础医学(可授医学...
    • 6 篇 特种医学
  • 73 篇 管理学
    • 44 篇 管理科学与工程(可...
    • 29 篇 图书情报与档案管...
  • 30 篇 艺术学
    • 29 篇 设计学(可授艺术学...
  • 5 篇 农学
  • 3 篇 教育学
  • 2 篇 法学

主题

  • 384 篇 computer vision
  • 251 篇 pattern recognit...
  • 81 篇 layout
  • 71 篇 cameras
  • 67 篇 object detection
  • 67 篇 image segmentati...
  • 67 篇 robustness
  • 59 篇 image processing
  • 58 篇 shape
  • 57 篇 humans
  • 55 篇 object recogniti...
  • 49 篇 face recognition
  • 49 篇 feature extracti...
  • 44 篇 application soft...
  • 43 篇 machine vision
  • 41 篇 computer science
  • 41 篇 stereo vision
  • 38 篇 artificial intel...
  • 38 篇 image processing...
  • 35 篇 face detection

机构

  • 15 篇 huazhong univ sc...
  • 13 篇 chinese acad sci...
  • 9 篇 national laborat...
  • 9 篇 institute for pa...
  • 7 篇 computer vision ...
  • 6 篇 microsoft resear...
  • 6 篇 national laborat...
  • 6 篇 institute for co...
  • 4 篇 robotics institu...
  • 4 篇 huazhong univ sc...
  • 4 篇 huazhong univ sc...
  • 4 篇 univ technol syd...
  • 4 篇 wuhan univ state...
  • 4 篇 institute for co...
  • 4 篇 computer vision ...
  • 3 篇 national lab. of...
  • 3 篇 lund university
  • 3 篇 univ chinese aca...
  • 3 篇 univ technol syd...
  • 3 篇 faculty of infor...

作者

  • 18 篇 tan tieniu
  • 16 篇 tao dacheng
  • 15 篇 sang nong
  • 12 篇 huang kaiqi
  • 11 篇 tieniu tan
  • 9 篇 zhang tianxu
  • 9 篇 tian jinwen
  • 8 篇 cao zhiguo
  • 8 篇 zhu song-chun
  • 8 篇 he xiangjian
  • 7 篇 kaiqi huang
  • 7 篇 li dehua
  • 7 篇 wu qiang
  • 6 篇 ding mingyue
  • 6 篇 horst bischof
  • 5 篇 cordelia schmid
  • 5 篇 sun zhenan
  • 5 篇 li xuelong
  • 5 篇 u. pal
  • 5 篇 mubarak shah

语言

  • 976 篇 英文
  • 30 篇 中文
  • 10 篇 其他
检索条件"任意字段=MIPPR 2007: Pattern Recognition and Computer Vision"
1015 条 记 录,以下是831-840 订阅
排序:
Free-shape subwindow search for object localization
Free-shape subwindow search for object localization
收藏 引用
Conference on computer vision and pattern recognition (CVPR)
作者: Zhiqi Zhang Yu Cao Dhaval Salvi Kenton Oliver Jarrell Waggoner Song Wang Department of Computer Science and Engineering University of South Carolina Columbia SC USA
Object localization in an image is usually handled by searching for an optimal subwindow that tightly covers the object of interest. However, the subwindows considered in previous work are limited to rectangles or oth... 详细信息
来源: 评论
PrivacyCam: a Privacy Preserving Camera Using uCLinux on the Blackfin DSP
PrivacyCam: a Privacy Preserving Camera Using uCLinux on the...
收藏 引用
Conference on computer vision and pattern recognition (CVPR)
作者: Ankur Chattopadhyay T.E. Boult Vision and Security Technology (VAST) Laboratory University of Colorado Colorado Springs Colorado Springs CO USA
Considerable research work has been done in the area of surveillance and biometrics, where the goals have always been high performance, robustness in security and cost optimization. With the emergence of more intellig... 详细信息
来源: 评论
Contextual pooling in image classification
Contextual pooling in image classification
收藏 引用
11th Asian Conference on computer vision, ACCV 2012
作者: Wu, Zifeng Huang, Yongzhen Wang, Liang Tan, Tieniu National Lab. of Pattern Recognition Institute of Automation Chinese Academy of Sciences Beijing 100190 China
The original bag-of-words (BoW) model in terms of image classification treats each local feature independently, and thus ignores the spatial relationships between a feature and its neighboring features, namely, the fe... 详细信息
来源: 评论
A Graph Reduction Method for 2D Snake Problems
A Graph Reduction Method for 2D Snake Problems
收藏 引用
Conference on computer vision and pattern recognition (CVPR)
作者: Jianhua Yan Keqi Zhang Chengcui Zhang Shu-Ching Chen Giri Narasimhan School of Computing and Information Sciences Florida International University USA Department of Environmental Studies & International Hurricane Research Center Florida State University USA Department of Computer and Information Sciences University of Alabama Birmingham USA
Energy-minimizing active contour models (snakes) have been proposed for solving many computer vision problems such as object segmentation, surface reconstruction, and object tracking. Dynamic programming which allows ... 详细信息
来源: 评论
Fast and robust object segmentation with the Integral Linear Classifier
Fast and robust object segmentation with the Integral Linear...
收藏 引用
Conference on computer vision and pattern recognition (CVPR)
作者: David Aldavert Ramon Lopez de Mantaras Arnau Ramisa Ricardo Toledo Computer Vision Center Department Computer Science University Autònoma de Barcelona Spain Artificial Intelligence Research Institute IIIA-CSIC INRIA-Grenoble France Artificial Intelligence Research Institute IIIA-CSIC Universidad Autonoma de Barcelona Spain
We propose an efficient method, built on the popular Bag of Features approach, that obtains robust multiclass pixel-level object segmentation of an image in less than 500ms, with results comparable or better than most... 详细信息
来源: 评论
Segmenting Motions of Different Types by Unsupervised Manifold Clustering
Segmenting Motions of Different Types by Unsupervised Manifo...
收藏 引用
Conference on computer vision and pattern recognition (CVPR)
作者: Alvina Goh Rene Vidal Center for Imaging Science Johns Hopkins University Baltimore MD USA
We propose a novel algorithm for segmenting multiple motions of different types from point correspondences in multiple affine or perspective views. Since point trajectories associated with different motions live in di... 详细信息
来源: 评论
Learning and Transferring Mid-Level Image Representations using Convolutional Neural Networks
Learning and Transferring Mid-Level Image Representations us...
收藏 引用
IEEE Conference on computer vision and pattern recognition
作者: Maxime Oquab Leon Bottou Ivan Laptev Josef Sivic INRIA MSR
Convolutional neural networks (CNN) have recently shown outstanding image classification performance in the large-scale visual recognition challenge (ILSVRC2012). The success of CNNs is attributed to their ability to ... 详细信息
来源: 评论
Learning to Group Objects
Learning to Group Objects
收藏 引用
IEEE Conference on computer vision and pattern recognition
作者: Victoria Yanulevskaya Jasper Uijlings Nicu Sebe University of Trento
This paper presents a novel method to generate a hypothesis set of class-independent object regions. It has been shown that such object regions can be used to focus computer vision techniques on the parts of an image ... 详细信息
来源: 评论
Color attributes for object detection
Color attributes for object detection
收藏 引用
Conference on computer vision and pattern recognition (CVPR)
作者: Fahad Shahbaz Khan Rao Muhammad Anwer Joost van de Weijer Andrew D. Bagdanov Maria Vanrell Antonio M. Lopez Computer Vision Laboratory Linköping University Sweden Computer Vision Center CS Department Universitat Authnòma de Barcelona Spain Media Integration and Communication Center University of Florence Italy
State-of-the-art object detectors typically use shape information as a low level feature representation to capture the local structure of an object. This paper shows that early fusion of shape and color, as is popular... 详细信息
来源: 评论
The Hierarchical Isometric Self-Organizing Map for Manifold Representation
The Hierarchical Isometric Self-Organizing Map for Manifold ...
收藏 引用
Conference on computer vision and pattern recognition (CVPR)
作者: Haiying Guan Matthew Turk Computer Science Department University of California Santa Barbara CA USA
We present an algorithm, Hierarchical ISOmetric Self-Organizing Map (H-ISOSOM), for a concise, organized manifold representation of complex, non-linear, large scale, high-dimensional input data in a low dimensional sp... 详细信息
来源: 评论