咨询与建议

限定检索结果

文献类型

  • 523 篇 会议
  • 291 篇 期刊文献
  • 8 篇 学位论文
  • 4 册 图书
  • 1 篇 资讯

馆藏范围

  • 827 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 576 篇 工学
    • 405 篇 计算机科学与技术...
    • 255 篇 软件工程
    • 145 篇 电气工程
    • 134 篇 信息与通信工程
    • 106 篇 光学工程
    • 86 篇 生物工程
    • 47 篇 控制科学与工程
    • 44 篇 电子科学与技术(可...
    • 39 篇 生物医学工程(可授...
    • 27 篇 材料科学与工程(可...
    • 22 篇 机械工程
    • 20 篇 仪器科学与技术
    • 20 篇 化学工程与技术
    • 18 篇 动力工程及工程热...
    • 18 篇 环境科学与工程(可...
    • 17 篇 测绘科学与技术
    • 12 篇 土木工程
  • 371 篇 理学
    • 241 篇 物理学
    • 98 篇 生物学
    • 93 篇 数学
    • 31 篇 统计学(可授理学、...
    • 23 篇 化学
    • 18 篇 系统科学
    • 14 篇 地球物理学
  • 60 篇 管理学
    • 37 篇 管理科学与工程(可...
    • 27 篇 图书情报与档案管...
  • 59 篇 医学
    • 49 篇 临床医学
    • 22 篇 基础医学(可授医学...
    • 15 篇 药学(可授医学、理...
  • 13 篇 法学
    • 13 篇 社会学
  • 7 篇 教育学
  • 6 篇 农学
  • 4 篇 经济学
  • 2 篇 文学
  • 2 篇 军事学
  • 2 篇 艺术学

主题

  • 122 篇 optical computin...
  • 121 篇 neural networks
  • 58 篇 deep learning
  • 56 篇 convolutional ne...
  • 50 篇 optical fiber ne...
  • 41 篇 optical imaging
  • 41 篇 feature extracti...
  • 41 篇 artificial neura...
  • 38 篇 predictive model...
  • 36 篇 training
  • 32 篇 computational mo...
  • 28 篇 neurons
  • 28 篇 machine learning
  • 27 篇 neural network m...
  • 26 篇 data models
  • 25 篇 accuracy
  • 21 篇 neural network
  • 20 篇 recurrent neural...
  • 19 篇 optical flow
  • 18 篇 deep neural netw...

机构

  • 6 篇 上海理工大学
  • 6 篇 beijing univ pos...
  • 4 篇 princeton univ d...
  • 4 篇 univ chinese aca...
  • 4 篇 queens univ dept...
  • 3 篇 department of co...
  • 3 篇 university of ch...
  • 3 篇 department of el...
  • 3 篇 univ british col...
  • 2 篇 the pennsylvania...
  • 2 篇 department of co...
  • 2 篇 national key lab...
  • 2 篇 school of comput...
  • 2 篇 beijing national...
  • 2 篇 aristotle univ t...
  • 2 篇 univ elect sci &...
  • 2 篇 huazhong univ sc...
  • 2 篇 school of comput...
  • 2 篇 city university ...
  • 2 篇 tsinghua univers...

作者

  • 9 篇 pasricha sudeep
  • 7 篇 nikdast mahdi
  • 7 篇 psaltis demetri
  • 5 篇 sunny febin
  • 5 篇 shastri bhavin j...
  • 4 篇 shafiee amin
  • 4 篇 prucnal paul r.
  • 4 篇 totovic angelina
  • 4 篇 afifi salma
  • 4 篇 mourgias-alexand...
  • 4 篇 pleros nikos
  • 3 篇 hayashi yoichi
  • 3 篇 gu jiaqi
  • 3 篇 yang yi
  • 3 篇 oguz ilker
  • 3 篇 fu pengju
  • 3 篇 lu yao
  • 3 篇 jiang xiao
  • 3 篇 pan david z.
  • 3 篇 ye yichen

语言

  • 768 篇 英文
  • 32 篇 其他
  • 30 篇 中文
检索条件"任意字段=Neural Network Models for Optical Computing 1988"
827 条 记 录,以下是11-20 订阅
排序:
Monolithically integrated asynchronous optical recurrent accelerator
收藏 引用
ELIGHT 2025年 第1期5卷 1-14页
作者: Wu, Bo Zhou, Haojun Cheng, Junwei Zhang, Wenkai Zhang, Shiji Huang, Chaoran Huang, Dongmei Zhou, Hailong Dong, Jianji Zhang, Xinliang Huazhong Univ Sci & Technol Sch Opt & Elect Informat Wuhan Natl Lab Optoelect Wuhan 430074 Peoples R China Chinese Univ Hong Kong Dept Elect Engn Shatin Hong Kong Peoples R China Hong Kong Polytech Univ Photon Res Inst Dept Elect & Elect Engn Hong Kong Peoples R China Xidian Univ Xian 710071 Peoples R China
computing with light is widely recognized as a promising paradigm for overcoming the energy and latency limitations of electronic computing. However, the energy consumption and latency in current optical computing har... 详细信息
来源: 评论
Confluence of Photonics and Artificial Intelligence
收藏 引用
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS 2025年 第3期31卷
作者: Chen, Young-Kai Coherent Corp Santa Clara CA 95054 USA
Over the past decades, significant advances have been made in the fields of photonic technologies, artificial intelligence, and machine learning techniques. Recent AI progress in language models, perception and self-l... 详细信息
来源: 评论
optical network modelling-based data analytics for network monitoring and security analysis using hybrid computing models
收藏 引用
optical AND QUANTUM ELECTRONICS 2023年 第14期55卷 1-16页
作者: Li, Fang Xie, Yalou Han, Yong Zhengzhou Univ Henan Prov Peoples Hosp Cent China Fuwai Hosp Dept InformatCtr Cent China Zhengzhou 450003 Henan Peoples R China
With the ever-increasing complexity and scale of optical networks, efficient network monitoring and robust security analysis have become paramount. In this study, we propose a novel approach that combines optical netw... 详细信息
来源: 评论
Quantum neural network Boosting Identifying Orbital Angular Momentum Modes
收藏 引用
ADVANCED QUANTUM TECHNOLOGIES 2025年 第0期
作者: Merabet, Badreddine Li, Liulin Shah, Syed Afaq Ali Guo, Zhongyi Hefei Univ Technol Sch Comp & Informat Engn Hefei 230000 Peoples R China
Quantum machine learning (QML) offers a breakthrough by producing atypical patterns that classical systems cannot efficiently produce. This study explores quantum neural networks (QNN) for classifying orbital angular ... 详细信息
来源: 评论
Data-Driven Modeling of Mach-Zehnder Interferometer-Based optical Matrix Multipliers
收藏 引用
JOURNAL OF LIGHTWAVE TECHNOLOGY 2023年 第16期41卷 5425-5436页
作者: Cem, Ali Yan, Siqi Ding, Yunhong Zibar, Darko Da Ros, Francesco Tech Univ Denmark Dept Elect & Photon Engn DK-2800 Lyngby Denmark Huazhong Univ Sci & Technol Sch Opt & Elect Informat Wuhan 430074 Peoples R China
Photonic integrated circuits are facilitating the development of optical neural networks, which have the potential to be both faster and more energy efficient than their electronic counterparts since optical signals a... 详细信息
来源: 评论
Fundamentals and recent developments of free-space optical neural networks
收藏 引用
JOURNAL OF APPLIED PHYSICS 2024年 第3期136卷 030701-030701页
作者: McNeil, Alexander Montes Li, Yuxiao Zhang, Allen Moebius, Michael Liu, Yongmin Northeastern Univ Dept Elect & Comp Engn Boston MA 02115 USA Charles Stark Draper Lab Cambridge MA 02139 USA Charles Stark Draper Lab Cambridge MA 02139 USA Northeastern Univ Dept Mech & Ind Engn Boston MA 02115 USA
Machine learning with artificial neural networks has recently transformed many scientific fields by introducing new data analysis and information processing techniques. Despite these advancements, efficient implementa... 详细信息
来源: 评论
Efficient on-chip training of large-scale optical neural network through block adjoint training algorithm
收藏 引用
OPTICS EXPRESS 2024年 第26期32卷 46633-46648页
作者: Yang, Zhiwei Zhang, Tian Dai, Jian Xu, Kun Beijing Univ Posts & Telecommun State Key Lab Informat Photon & Opt Commun Beijing 100876 Peoples R China Beijing Univ Posts & Telecommun Sch Elect Engn Beijing 100876 Peoples R China
MZI-based block optical neural networks (BONNs), which utilize block matrix multiplication to achieve large-scale network models, have garnered significant attention but still lack efficient training algorithms. In th... 详细信息
来源: 评论
OPIMA: optical Processing-in-Memory for Convolutional neural network Acceleration
收藏 引用
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 2024年 第11期43卷 3888-3899页
作者: Sunny, Febin Shafiee, Amin Balasubramaniam, Abhishek Nikdast, Mahdi Pasricha, Sudeep Colorado State Univ Elect & Comp Engn Dept Ft Collins CO 80523 USA
Recent advances in machine learning (ML) have spotlighted the pressing need for computing architectures that bridge the gap between memory bandwidth and processing power. The advent of deep neural networks has pushed ... 详细信息
来源: 评论
Reliability analysis of optical neural networks with non-ideal signal transmission
收藏 引用
optical FIBER TECHNOLOGY 2024年 87卷
作者: Su, Ye Fu, Pengju Ye, Yichen Chai, Junxiong Jiang, Xiao Yang, Hongyu Xie, Yiyuan Southwest Univ Coll Elect & Informat Engn Chongqing Peoples R China Key Lab Nonlinear Circuits & Intelligent Informat Chongqing Peoples R China Key Lab Networks & Cloud Comp Secur Univ Chongqing Peoples R China
Machine learning plays a significant role in various fields. As a fundamental part of machine learning, matrix operations are one of the most important computational parts of neural networks. However, the advancement ... 详细信息
来源: 评论
Human emotion recognition with a microcomb-enabled integrated optical neural network
收藏 引用
NANOPHOTONICS 2023年 第20期12卷 3883-3894页
作者: Cheng, Junwei Xie, Yanzhao Liu, Yu Song, Junjie Liu, Xinyu He, Zhenming Zhang, Wenkai Han, Xinjie Zhou, Hailong Zhou, Ke Zhou, Heng Dong, Jianji Zhang, Xinliang Huazhong Univ Sci & Technol Wuhan Natl Lab Optoelect Wuhan 430074 Peoples R China Opt Valley Lab Wuhan 430074 Peoples R China Huazhong Univ Sci & Technol Sch Comp Sci & Technol Wuhan 430074 Peoples R China Univ Elect Sci & Technol China Key Lab Opt Fiber Sensing & Commun Networks Chengdu 611731 Peoples R China
State-of-the-art deep learning models can converse and interact with humans by understanding their emotions, but the exponential increase in model parameters has triggered an unprecedented demand for fast and low-powe... 详细信息
来源: 评论