咨询与建议

限定检索结果

文献类型

  • 529 篇 会议
  • 296 篇 期刊文献
  • 8 篇 学位论文
  • 4 册 图书
  • 1 篇 资讯

馆藏范围

  • 838 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 581 篇 工学
    • 411 篇 计算机科学与技术...
    • 256 篇 软件工程
    • 146 篇 电气工程
    • 135 篇 信息与通信工程
    • 106 篇 光学工程
    • 86 篇 生物工程
    • 49 篇 控制科学与工程
    • 45 篇 电子科学与技术(可...
    • 38 篇 生物医学工程(可授...
    • 28 篇 材料科学与工程(可...
    • 22 篇 机械工程
    • 21 篇 仪器科学与技术
    • 20 篇 化学工程与技术
    • 18 篇 动力工程及工程热...
    • 18 篇 环境科学与工程(可...
    • 17 篇 测绘科学与技术
    • 12 篇 土木工程
  • 374 篇 理学
    • 242 篇 物理学
    • 98 篇 生物学
    • 96 篇 数学
    • 32 篇 统计学(可授理学、...
    • 23 篇 化学
    • 18 篇 系统科学
    • 14 篇 地球物理学
  • 61 篇 管理学
    • 38 篇 管理科学与工程(可...
    • 27 篇 图书情报与档案管...
  • 59 篇 医学
    • 49 篇 临床医学
    • 22 篇 基础医学(可授医学...
    • 15 篇 药学(可授医学、理...
  • 13 篇 法学
    • 13 篇 社会学
  • 6 篇 教育学
  • 6 篇 农学
  • 4 篇 经济学
  • 2 篇 文学
  • 2 篇 军事学
  • 2 篇 艺术学

主题

  • 124 篇 neural networks
  • 123 篇 optical computin...
  • 59 篇 deep learning
  • 59 篇 convolutional ne...
  • 50 篇 optical fiber ne...
  • 42 篇 optical imaging
  • 42 篇 feature extracti...
  • 42 篇 artificial neura...
  • 39 篇 predictive model...
  • 36 篇 training
  • 32 篇 computational mo...
  • 30 篇 machine learning
  • 28 篇 neurons
  • 27 篇 neural network m...
  • 27 篇 accuracy
  • 26 篇 data models
  • 21 篇 neural network
  • 20 篇 recurrent neural...
  • 19 篇 deep neural netw...
  • 19 篇 optical flow

机构

  • 6 篇 上海理工大学
  • 6 篇 beijing univ pos...
  • 5 篇 univ chinese aca...
  • 4 篇 princeton univ d...
  • 4 篇 queens univ dept...
  • 3 篇 department of co...
  • 3 篇 chinese acad sci...
  • 3 篇 department of el...
  • 3 篇 univ british col...
  • 2 篇 the pennsylvania...
  • 2 篇 department of co...
  • 2 篇 national key lab...
  • 2 篇 school of comput...
  • 2 篇 beijing national...
  • 2 篇 aristotle univ t...
  • 2 篇 univ elect sci &...
  • 2 篇 huazhong univ sc...
  • 2 篇 school of comput...
  • 2 篇 city university ...
  • 2 篇 tsinghua univers...

作者

  • 10 篇 pasricha sudeep
  • 7 篇 nikdast mahdi
  • 7 篇 psaltis demetri
  • 6 篇 shastri bhavin j...
  • 5 篇 sunny febin
  • 5 篇 afifi salma
  • 4 篇 shafiee amin
  • 4 篇 prucnal paul r.
  • 4 篇 totovic angelina
  • 4 篇 mourgias-alexand...
  • 4 篇 pleros nikos
  • 4 篇 huang chaoran
  • 3 篇 hayashi yoichi
  • 3 篇 gu jiaqi
  • 3 篇 yang yi
  • 3 篇 oguz ilker
  • 3 篇 fu pengju
  • 3 篇 lu yao
  • 3 篇 jiang xiao
  • 3 篇 pan david z.

语言

  • 765 篇 英文
  • 46 篇 其他
  • 30 篇 中文
检索条件"任意字段=Neural Network Models for Optical Computing 1988"
838 条 记 录,以下是611-620 订阅
排序:
Doctor’s Cursive Handwriting Recognition System Using Deep Learning
Doctor’s Cursive Handwriting Recognition System Using Deep ...
收藏 引用
International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM)
作者: Lovely Joy Fajardo Niño Joshua Sorillo Jaycel Garlit Cia Dennise Tomines Mideth B. Abisado Joseph Marvin R. Imperial Ramon L. Rodriguez Bernie S. Fabito College of Computing and Information Technologies National University Manila City Philippines College of Computer Studies Pamantasan ng Cabuyao Cabuyao City Philippines
Handwriting is a skill to express thoughts, ideas, and language. Over the years, medical doctors have been well-known for having illegible cursive handwritings and has been a generally accepted matter. The datasets us... 详细信息
来源: 评论
Object Classification using Deep Learning on Extremely Low-Resolution Time-of-Flight Data
Object Classification using Deep Learning on Extremely Low-R...
收藏 引用
2018 International Conference on Digital Image computing: Techniques and Applications, DICTA 2018
作者: Ruvalcaba-Cardenas, Ana Daysi Scoleri, Tony Day, Geoffrey Dept. Elec. Eng. RMIT Melbourne Australia EOCM Group CEWD Defence Science and Technology Group Adelaide Australia WSTS Group WCSD Defence Science and Technology Group Adelaide Australia
This paper proposes two novel deep learning models for 2D and 3D classification of objects in extremely low-resolution time-of-flight imagery. The models have been developed to suit contemporary range imaging hardware... 详细信息
来源: 评论
A Novel Feature-spanning Machine Learning Technology for Defect Inspection
A Novel Feature-spanning Machine Learning Technology for Def...
收藏 引用
International Microsystems, Packaging, Assembly and Circuits Technology (IMPACT)
作者: Yi-Chung Hsu Ping-Yen Kuo Wong-Shian Huang AI & Advanced Optical Technology Development Division Corporate R&D Advanced Semiconductor Engineering (ASE) Inc. Zhubei City Hsinchu County 302 Taiwan (R.O.C.)
Defect inspection (to detect, classify, measure and analyze) has long been a challenging task in semiconductor manufacturing (MFG) domain. This paper discusses a new Machine Learning (ML) approach which can be used to... 详细信息
来源: 评论
基于字序列的非结构化简历信息解析方法
收藏 引用
计算机工程与设计 2019年 第6期40卷 1769-1774页
作者: 陈毅 符磊 张剑 黄石磊 重庆邮电大学光通信与网络重点实验室 重庆400065 安徽大学计算智能与信号处理教育部重点实验室 安徽合肥230601 北京大学深圳研究院 广东深圳518057 深港产学研基地深圳市智能媒体和语音重点实验室 广东深圳518057 深港产学研基地产业发展中心 广东深圳518057
为有效解决传统简历解析方法效率低、成本高、泛化能力差的问题,提出一种基于字序列的非结构化文本简历解析方法。利用BLSTM对字序列进行建模,获得一个包含字序列信息的词表示;由BLSTM神经网络强大的学习能力对特征进行学习,获得相应的... 详细信息
来源: 评论
High-Power LED Photoelectrothermal Analysis Based on Backpropagation Artificial neural networks
收藏 引用
IEEE TRANSACTIONS ON ELECTRON DEVICES 2017年 第7期64卷 2867-2873页
作者: Liu, Hongwei Guo, Kai Zhang, Zanyun Yu, Dandan Zhang, Jianxin Ning, Pingfan Cheng, Junchao Li, Xiaoyun Niu, Pingjuan Tianjin Polytech Univ Sch Elect & Informat Engn Tianjin 300387 Peoples R China Tianjin Key Lab Optoelect Detect Technol & Syst Tianjin 300387 Peoples R China Tianjin Key Lab Adv Elect Engn & Energy Technol Tianjin 300387 Peoples R China
As an electroluminescent device, the coupling relationship between light-emitting diode (LED) input currents, optical power, and LED junction temperature is a complicated multiphysics process. In this paper, a simplif... 详细信息
来源: 评论
Dynamic Spatio-Temporal Feature Learning via Graph Convolution in 3D Convolutional networks
Dynamic Spatio-Temporal Feature Learning via Graph Convoluti...
收藏 引用
IEEE International Conference on Data Mining Workshops (ICDM Workshops)
作者: Jun Li Xianglong Liu Jun Xiao Hainan Li Shuo Wang Liang Liu State Key Lab of Software Development Environment Beihang University China Beijing Advanced Innovation Center for Big Data-Based Precision Medicine Beihang University Beijing China
Video data owns strong dynamic features in both spatial and temporal domains. In the literature, 3D Convolutional neural networks (3D CNNs) serve as a successful technique to simultaneously learn the spatio-temporal f... 详细信息
来源: 评论
Handwritten Yi Character Recognition with Density-based Clustering Algorithm and Convolutional neural network  20
Handwritten Yi Character Recognition with Density-based Clus...
收藏 引用
20th IEEE International Conference on Computational Science and Engineering (CSE) / 15th IEEE/IFIP International Conference on Embedded and Ubiquitous computing (EUC)
作者: Jia Xiaodong Gong Wendong Yuan Jie Minzu Univ China Sch Informat & Engn Beijing Peoples R China
A great deal of research has focused on using convolutional neural network for optical character recognition. However we encountered two typical problem in this field when applied convolutional neural network to handw... 详细信息
来源: 评论
Converged Recommendation System Based on RNN and BP neural networks
Converged Recommendation System Based on RNN and BP Neural N...
收藏 引用
International Conference on Big Data and Smart computing (BIGCOMP)
作者: ZhaoWei Qu Shuqiang Zheng Xiaoru Wang Xiaomin Song Baiwei Li Xiaohui Song Institute of Network Technology Beijing University of Posts and Telecommunications Beijing China School of Computer Science Beijing University of Posts and Telecommunications Beijing China Institute of Information Photonics and Optical Communication Beijing University of Posts and Telecommunications School of Cyberspace Security Beijing University of Posts and Telecommunications Beijing China
Recommendation systems based on rating prediction model didn't consider temporal context and recurrent pattern. And past user behavior analysis didn't simultaneously consider long-term behavior, short-term beh... 详细信息
来源: 评论
Deep optical neural network by living tumour brain cells
arXiv
收藏 引用
arXiv 2018年
作者: Pierangeli, D. Palmieri, V. Marcucci, G. Moriconi, C. Perini, G. de Spirito, M. Papi, M. Conti, C. Department of Physics University Sapienza Piazzale Aldo Moro 5 Rome00185 Italy Institute of Physics Fondazione Policlinico Universitario A. Gemelli IRCCS ‐ Università Cattolica del Sacro Cuore Rome00168 Italy School of Pharmacy and Pharmaceutical Sciences Cardiff University CardiffCF10 3NB United Kingdom Via dei Taurini 19 Rome00185
The new era of artificial intelligence demands large-scale ultrafast hardware for machine learning.1 optical artificial neural networks process classical and quantum information at the speed of light, and are compatib... 详细信息
来源: 评论
感知器残差网络和超限学习机融合的3D物体识别
收藏 引用
中国图象图形学报 2019年 第10期24卷 1738-1749页
作者: 黄强 王永雄 上海理工大学光电信息与计算机工程学院 上海200093 上海康复器械工程技术研究中心 上海200093
目的随着3D扫描技术和虚拟现实技术的发展,真实物体的3D识别方法已经成为研究的热点之一。针对现有基于深度学习的方法训练时间长,识别效果不理想等问题,提出了一种结合感知器残差网络和超限学习机(ELM)的3D物体识别方法。方法以超限学... 详细信息
来源: 评论