咨询与建议

限定检索结果

文献类型

  • 3,648 篇 会议
  • 2,609 篇 期刊文献
  • 146 篇 学位论文
  • 21 篇 专利
  • 18 册 图书
  • 4 篇 科技报告
  • 1 篇 资讯

馆藏范围

  • 6,446 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 4,397 篇 工学
    • 3,112 篇 计算机科学与技术...
    • 1,357 篇 电气工程
    • 1,330 篇 软件工程
    • 864 篇 信息与通信工程
    • 452 篇 控制科学与工程
    • 302 篇 生物工程
    • 266 篇 电子科学与技术(可...
    • 209 篇 仪器科学与技术
    • 172 篇 机械工程
    • 160 篇 生物医学工程(可授...
    • 133 篇 光学工程
    • 87 篇 材料科学与工程(可...
    • 87 篇 动力工程及工程热...
    • 77 篇 测绘科学与技术
    • 66 篇 化学工程与技术
  • 1,398 篇 理学
    • 530 篇 生物学
    • 468 篇 物理学
    • 406 篇 数学
    • 111 篇 统计学(可授理学、...
    • 94 篇 化学
    • 89 篇 系统科学
    • 77 篇 地球物理学
  • 662 篇 医学
    • 442 篇 临床医学
    • 406 篇 基础医学(可授医学...
    • 80 篇 特种医学
    • 75 篇 医学技术(可授医学...
  • 508 篇 管理学
    • 368 篇 管理科学与工程(可...
    • 149 篇 图书情报与档案管...
    • 62 篇 工商管理
  • 145 篇 教育学
    • 131 篇 心理学(可授教育学...
  • 92 篇 农学
  • 74 篇 法学
  • 32 篇 文学
  • 18 篇 经济学
  • 12 篇 艺术学
  • 8 篇 军事学
  • 2 篇 哲学

主题

  • 1,022 篇 neural networks
  • 430 篇 deep learning
  • 289 篇 training
  • 266 篇 computational mo...
  • 256 篇 artificial neura...
  • 253 篇 neural network
  • 224 篇 machine learning
  • 209 篇 feature extracti...
  • 166 篇 deep neural netw...
  • 165 篇 parallel process...
  • 161 篇 convolutional ne...
  • 156 篇 neurons
  • 143 篇 computer archite...
  • 130 篇 graph neural net...
  • 127 篇 convolutional ne...
  • 126 篇 distributed proc...
  • 122 篇 signal processin...
  • 103 篇 distributed comp...
  • 93 篇 data models
  • 92 篇 optimization

机构

  • 19 篇 univ chinese aca...
  • 15 篇 college of compu...
  • 13 篇 univ penn dept e...
  • 13 篇 tsinghua univ de...
  • 13 篇 science and tech...
  • 12 篇 shandong normal ...
  • 11 篇 chinese acad sci...
  • 11 篇 institute of inf...
  • 11 篇 carnegie mellon ...
  • 11 篇 beijing universi...
  • 10 篇 school of cyber ...
  • 10 篇 peng cheng lab p...
  • 10 篇 natl univ def te...
  • 9 篇 jilin univ coll ...
  • 9 篇 国防科技大学
  • 9 篇 univ chinese aca...
  • 9 篇 university of ch...
  • 9 篇 carnegie mellon ...
  • 9 篇 natl univ def te...
  • 9 篇 university of to...

作者

  • 17 篇 liu jie
  • 15 篇 li dongsheng
  • 15 篇 wang wei
  • 14 篇 dou yong
  • 13 篇 ribeiro alejandr...
  • 13 篇 jie liu
  • 12 篇 li yue
  • 11 篇 chen xinhai
  • 11 篇 li bo
  • 11 篇 lai zhiquan
  • 10 篇 liu yang
  • 10 篇 zhong tie
  • 10 篇 li jun
  • 10 篇 zhang wei
  • 8 篇 li li
  • 8 篇 behrmann marlene
  • 8 篇 chen li
  • 8 篇 niu xin
  • 8 篇 dong xintong
  • 8 篇 kokkinos yiannis

语言

  • 5,941 篇 英文
  • 356 篇 中文
  • 139 篇 其他
  • 4 篇 日文
  • 3 篇 德文
  • 3 篇 法文
  • 2 篇 斯洛文尼亚文
  • 2 篇 土耳其文
  • 1 篇 西班牙文
  • 1 篇 意大利文
  • 1 篇 俄文
检索条件"任意字段=Neural Network and Distributed Processing"
6447 条 记 录,以下是291-300 订阅
排序:
Federated Learning with LSTM neural network for Regional Load Forecasting  21
Federated Learning with LSTM Neural Network for Regional Loa...
收藏 引用
21st International Conference on Harmonics and Quality of Power
作者: You, Bo Xing, Cheng Yu, Qiao Zhang, Maolin He, Zhaoran Zeng, Lizhen Liu, Chen Datang Chongqing Energy Mkt CO LTD Chongqing Peoples R China Chongqing Univ Sch Elect Engn Chongqing Peoples R China
With the increasing penetration of distributed energy resources at the grid edge, including renewable energy generation, flexible loads, and energy storage devices, accurately predicting consumer-level distributed gen... 详细信息
来源: 评论
Swift : Expedited Failure Recovery for Large-Scale DNN Training
收藏 引用
IEEE TRANSACTIONS ON PARALLEL AND distributed SYSTEMS 2024年 第9期35卷 1644-1656页
作者: Zhong, Yuchen Sheng, Guangming Liu, Juncheng Yuan, Jinhui Wu, Chuan Univ Hong Kong Hong Kong Peoples R China OneFlow Inc Beijing 100089 Peoples R China
As the size of deep learning models gets larger and larger, training takes longer time and more resources, making fault tolerance more and more critical. Existing state-of-the-art methods like CheckFreq and Elastic Ho... 详细信息
来源: 评论
Synchronization of Coupled Memristive neural network Based on Edge-Event Triggered Control
收藏 引用
neural processing LETTERS 2023年 第8期55卷 11209-11232页
作者: An, Letian Yang, Yongqing Hao, Rixu Li, Li Jiangnan Univ Sch Sci Xue Lang St Wuxi 214122 Jiangsu Peoples R China Jiangnan Univ Sch Internet Things Xue Lang St Wuxi 214122 Jiangsu Peoples R China
This research aims to investigate synchronization issues in coupled memristive neural networks (CMNNs) using both the static and dynamic edge-event triggered control protocols. An interval parameter system is develope... 详细信息
来源: 评论
A Multidimensional Communication Scheduling Method for Hybrid Parallel DNN Training
收藏 引用
IEEE TRANSACTIONS ON PARALLEL AND distributed SYSTEMS 2024年 第8期35卷 1415-1428页
作者: Li, Shengwei Lu, Kai Lai, Zhiquan Liu, Weijie Ge, Keshi Li, Dongsheng Natl Univ Def Technol Coll Comp Natl Key Lab Parallel & Distributed Comp Changsha 410073 Peoples R China
The transformer-based deep neural network (DNN) models have shown considerable success across diverse tasks, prompting widespread adoption of distributed training methods such as data parallelism and pipeline parallel... 详细信息
来源: 评论
RCIF: TOWARDS ROBUST distributed DNN COLLABORATIVE INFERENCE UNDER HIGHLY LOSSY networkS  49
RCIF: TOWARDS ROBUST DISTRIBUTED DNN COLLABORATIVE INFERENCE...
收藏 引用
49th IEEE International Conference on Acoustics, Speech, and Signal processing (ICASSP)
作者: Cheng, Yujun Zhang, Zhewei Wang, Shengjin Tsinghua Univ Dept Elect Engn Beijing Peoples R China Beijing Natl Res Ctr Informat Sci & Technol BNRis Beijing Peoples R China ZEEWAIN Technol Co Ltd Beijing Peoples R China
Collaborative Inference is a prospective paradigm for accelerating Deep neural network (DNN) inference by harnessing the computational resources of multiple devices. However, in highly lossy network environments, such... 详细信息
来源: 评论
Trustworthy distributed Deep neural network Training in an Edge Device network
Trustworthy Distributed Deep Neural Network Training in an E...
收藏 引用
IEEE International Conference on Big Data
作者: Sudipta Saha Shubha Haiying Shen Department of Computer Science University of Virginia USA
With the increased usage of edge devices having local computation capabilities, deep neural network (DNN) training in a network of edge devices becomes promising. Several recent works have proposed fully edge-based di... 详细信息
来源: 评论
A Hybrid Model Based on CNN-LSTM to Detect and Forecast Harmonics: A Case Study of an Eskom Substation in South Africa
收藏 引用
ELECTRIC POWER COMPONENTS AND SYSTEMS 2023年 第8期51卷 746-760页
作者: Kuyumani, E. M. Hasan, Ali N. Shongwe, T. Univ Johannesburg Dept Elect & Elect Engn Sci Johannesburg South Africa
The ever-growing modern smart grid with more distributed energy resources is providing efficient energy supply while facing several challenges that include harmonics induced among many. Previous and present literature... 详细信息
来源: 评论
Auditing of Hadoop log file for dynamic detection of threats using H-ISSM-MIM and Convolutional neural network
收藏 引用
JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2023年 第4期45卷 6617-6628页
作者: Suganya, S. Selvamuthukumaran, S. SASTRA Deemed Univ Dept CSE Kumbakonam Tamil Nadu India AVC Coll Engn Dept Comp Applicat Mayiladuthurai Tamil Nadu India
Hadoop is a big data processing system that enables the distributed processing of massive data sets across multiple computers using straightforward programming techniques. Hadoop has been extensively investigated in m... 详细信息
来源: 评论
Feature Extraction and Classification Techniques for Power Quality Disturbances in distributed Generation: A Review
收藏 引用
IETE JOURNAL OF RESEARCH 2023年 第6期69卷 3836-3851页
作者: Singh, Nivedita Ansari, M. A. Tripathy, Manoj Singh, Vivek Pratap Gautam Buddha Univ Dept Elect Engn Greater Noida 201312 India IIT Roorkee Dept Elect Engn Roorkee 247667 Uttar Pradesh India
The purpose of this paper is to analyze the frequent power quality (PQ) issues happening in distributed generation, the outcomes of the PQ harmonics, the methods used to assess the quantity of harmonic distortion whic... 详细信息
来源: 评论
Bandwidth-efficient distributed neural network architectures with application to body sensor networks
arXiv
收藏 引用
arXiv 2022年
作者: Strypsteen, Thomas Bertrand, Alexander STADIUS Center for Dynamical Systems Signal Processing and Data Analytics Leuven.AI - KU Leuven institute for AI Kasteelpark Arenberg 10 LeuvenB-3001 Belgium
In this paper, we describe a conceptual design methodology to design distributed neural network architectures that can perform efficient inference within sensor networks with communication bandwidth constraints. The d... 详细信息
来源: 评论