咨询与建议

限定检索结果

文献类型

  • 3,674 篇 会议
  • 2,605 篇 期刊文献
  • 123 篇 学位论文
  • 21 篇 专利
  • 18 册 图书
  • 1 篇 资讯

馆藏范围

  • 6,441 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 4,425 篇 工学
    • 3,119 篇 计算机科学与技术...
    • 1,375 篇 电气工程
    • 1,326 篇 软件工程
    • 867 篇 信息与通信工程
    • 455 篇 控制科学与工程
    • 306 篇 生物工程
    • 263 篇 电子科学与技术(可...
    • 212 篇 仪器科学与技术
    • 173 篇 机械工程
    • 160 篇 生物医学工程(可授...
    • 134 篇 光学工程
    • 86 篇 材料科学与工程(可...
    • 83 篇 动力工程及工程热...
    • 77 篇 测绘科学与技术
    • 64 篇 化学工程与技术
  • 1,381 篇 理学
    • 517 篇 生物学
    • 469 篇 物理学
    • 409 篇 数学
    • 115 篇 统计学(可授理学、...
    • 97 篇 化学
    • 89 篇 系统科学
    • 77 篇 地球物理学
  • 638 篇 医学
    • 432 篇 临床医学
    • 386 篇 基础医学(可授医学...
    • 78 篇 特种医学
    • 73 篇 医学技术(可授医学...
  • 505 篇 管理学
    • 367 篇 管理科学与工程(可...
    • 148 篇 图书情报与档案管...
    • 61 篇 工商管理
  • 140 篇 教育学
    • 126 篇 心理学(可授教育学...
  • 89 篇 农学
  • 69 篇 法学
  • 33 篇 文学
  • 18 篇 经济学
  • 13 篇 艺术学
  • 8 篇 军事学
  • 3 篇 哲学

主题

  • 1,034 篇 neural networks
  • 435 篇 deep learning
  • 307 篇 training
  • 275 篇 computational mo...
  • 261 篇 artificial neura...
  • 252 篇 neural network
  • 218 篇 machine learning
  • 217 篇 feature extracti...
  • 180 篇 convolutional ne...
  • 169 篇 deep neural netw...
  • 165 篇 parallel process...
  • 153 篇 neurons
  • 145 篇 computer archite...
  • 132 篇 graph neural net...
  • 128 篇 convolutional ne...
  • 127 篇 distributed proc...
  • 123 篇 signal processin...
  • 106 篇 distributed comp...
  • 98 篇 data models
  • 96 篇 optimization

机构

  • 20 篇 univ chinese aca...
  • 15 篇 college of compu...
  • 13 篇 univ penn dept e...
  • 13 篇 tsinghua univ de...
  • 13 篇 science and tech...
  • 12 篇 shandong normal ...
  • 11 篇 chinese acad sci...
  • 11 篇 institute of inf...
  • 11 篇 carnegie mellon ...
  • 11 篇 beijing universi...
  • 10 篇 school of cyber ...
  • 10 篇 peng cheng lab p...
  • 9 篇 university of sc...
  • 9 篇 jilin univ coll ...
  • 9 篇 国防科技大学
  • 9 篇 univ chinese aca...
  • 9 篇 natl univ def te...
  • 9 篇 natl univ def te...
  • 8 篇 华中科技大学
  • 8 篇 ibm tj watson re...

作者

  • 17 篇 liu jie
  • 15 篇 li dongsheng
  • 15 篇 wang wei
  • 14 篇 dou yong
  • 13 篇 ribeiro alejandr...
  • 13 篇 li yue
  • 13 篇 jie liu
  • 11 篇 chen xinhai
  • 11 篇 li bo
  • 11 篇 lai zhiquan
  • 10 篇 liu yang
  • 10 篇 zhong tie
  • 10 篇 li jun
  • 8 篇 li li
  • 8 篇 chen li
  • 8 篇 niu xin
  • 8 篇 dong xintong
  • 8 篇 kokkinos yiannis
  • 8 篇 gama fernando
  • 8 篇 xu kele

语言

  • 5,717 篇 英文
  • 360 篇 中文
  • 352 篇 其他
  • 4 篇 日文
  • 2 篇 斯洛文尼亚文
  • 2 篇 土耳其文
  • 1 篇 德文
  • 1 篇 西班牙文
  • 1 篇 法文
  • 1 篇 俄文
检索条件"任意字段=Neural Network and Distributed Processing"
6442 条 记 录,以下是971-980 订阅
排序:
STB-GraCapsNet: A Novel Capsule network Structure with Swin Transformer Block  25th
STB-GraCapsNet: A Novel Capsule Network Structure with Swin...
收藏 引用
25th International Conference on Parallel and distributed Computing, Applications and Technologies, PDCAT 2024
作者: Zhang, Chunying Dong, Ziao Wang, Liya Liu, Lu Ren, Jing Ma, Jiang Liu, Bin College of Science North China University of Science and Technology 21 Bohai Road Caofeidian Xincheng Hebei Tangshan063210 China Big data and Social Computing Research Center Hebei University of Science and Technology Hebei Shijiazhuang0500198 China
Capsule network is a new type of neural network encoding features into capsules and constructing the part-whole relationships, which demonstrated good performance in image classification. However, it has some issues s... 详细信息
来源: 评论
STRec: Social-Augmented Time-Aware Cross-Domain Sequential Recommendation  22
STRec: Social-Augmented Time-Aware Cross-Domain Sequential R...
收藏 引用
22nd IEEE International Symposium on Parallel and distributed processing with Applications, ISPA 2024
作者: Gao, Xiangyun Meng, Dan Sun, Xianlan Wang, Wei Zhu, Haibei Kong, Chao Anhui Polytechnic University School of Information and Computer Wuhu China Oppo Research Institute Shenzhen China Georgia Institute of Technology School of Electrical and Computer Engineering Atlanta United States
Cross-domain sequential recommendation leverages a user's historical interaction behavior across multiple domains to forecast the subsequent item with which they are likely to engage. Despite the efforts made by p... 详细信息
来源: 评论
Extracting Interpretable Hierarchical Rules from Deep neural networks' Latent Space  7th
Extracting Interpretable Hierarchical Rules from Deep Neural...
收藏 引用
7th International Joint Conference on Rules and Reasoning (RuleML+RR)
作者: Wang, Ya Paschke, Adrian Fraunhofer Inst Open Commun Syst Kaiserin Augusta Allee 31 D-10589 Berlin Germany Free Univ Berlin Kaiserswerther Str 16-18 D-14195 Berlin Germany
Deep neural networks, known for their superior learning capabilities, excel in identifying complex relationships between inputs and outputs, leveraging hierarchical, distributed data processing. Despite their impressi... 详细信息
来源: 评论
Large-Scale Machine Learning Cluster Scheduling via Multi-Agent Graph Reinforcement Learning
收藏 引用
IEEE TRANSACTIONS ON network AND SERVICE MANAGEMENT 2022年 第4期19卷 4962-4974页
作者: Zhao, Xiaoyang Wu, Chuan Univ Hong Kong Dept Comp Sci Hong Kong Peoples R China
Efficient scheduling of distributed deep learning (DL) jobs in large GPU clusters is crucial for resource efficiency and job performance. While server sharing among jobs improves resource utilization, interference amo... 详细信息
来源: 评论
NASFLY: On-Device Split Federated Learning with neural Architecture Search  22
NASFLY: On-Device Split Federated Learning with Neural Archi...
收藏 引用
22nd IEEE International Symposium on Parallel and distributed processing with Applications, ISPA 2024
作者: Huo, Chao Jia, Juncheng Deng, Tao Dong, Mianxiong Yu, Zhanwei Yuan, Di Soochow University School of Computer Science and Technology Suzhou215006 China Muroran Institute of Technology Muroran050-8585 Japan Uppsala University Department of Information Technology Sweden
The integration of Artificial Intelligence (AI) and Internet of Things (IoT) devices has given rise to IoAT, promising transformative applications across various domains. Federated Learning (FL) and Split Learning (SL... 详细信息
来源: 评论
AtRec: Accelerating Recommendation Model Training on CPUs
收藏 引用
IEEE TRANSACTIONS ON PARALLEL AND distributed SYSTEMS 2024年 第6期35卷 750-763页
作者: Wang, Siqi Feng, Tianyu Yang, Hailong You, Xin Chen, Bangduo Liu, Tongxuan Luan, Zhongzhi Qian, Depei Beihang Univ State Key Lab Software Dev Environm Beijing 100191 Peoples R China Beihang Univ Sch Comp Sci & Engn Beijing 100191 Peoples R China Alibaba Corp Beijing 100020 Peoples R China Univ Sci & Technol China Hefei 230026 Peoples R China
The popularity of recommendation models and the enhanced AI processing capability of CPUs have provided massive performance opportunities to deliver satisfactory experiences to a large number of users. Unfortunately, ... 详细信息
来源: 评论
Theoretically Better and Numerically Faster distributed Optimization with Smoothness-Aware Quantization Techniques  36
Theoretically Better and Numerically Faster Distributed Opti...
收藏 引用
36th Conference on neural Information processing Systems (NeurIPS)
作者: Wang, Bokun Safaryan, Mher Richtarik, Peter Texas A&M Univ College Stn TX 77843 USA KAUST Thuwal Saudi Arabia
To address the high communication costs of distributed machine learning, a large body of work has been devoted in recent years to designing various compression strategies, such as sparsification and quantization, and ... 详细信息
来源: 评论
Escaping Saddle Points with Bias-Variance Reduced Local Perturbed SGD for Communication Efficient Nonconvex distributed Learning  36
Escaping Saddle Points with Bias-Variance Reduced Local Pert...
收藏 引用
36th Conference on neural Information processing Systems (NeurIPS)
作者: Murata, Tomoya Suzuki, Taiji NTT DATA Math Syst Inc Tokyo Japan Univ Tokyo Grad Sch Informat Sci & Technol Tokyo Japan RIKEN Ctr Adv Intelligence Project Tokyo Japan
In recent centralized nonconvex distributed learning and federated learning, local methods are one of the promising approaches to reduce communication time. However, existing work has mainly focused on studying first-... 详细信息
来源: 评论
Application of a novel artificial neural network model in flood forecasting
收藏 引用
ENVIRONMENTAL MONITORING AND ASSESSMENT 2022年 第2期194卷 1-13页
作者: Wang, Guangsheng Yang, Jianqing Hu, Yuzhong Li, Jingbing Yin, Zhijie Minist Water Resources Hydrol & Water Resources Monitoring & Forecasting Beijing 100053 Peoples R China Minist Water Resources Dept Hydrol Beijing 100053 Peoples R China Hydrol Bur Anhui Prov Hefei 230000 Anhui Peoples R China
In this paper, a novel ANN flood forecasting model is proposed. The ANN model is combined with traditional hydrological concepts and methods, taking the initial Antecedent Precipitation Index (API), rainfall, upstream... 详细信息
来源: 评论
RNNs of RNNs: Recursive Construction of Stable Assemblies of Recurrent neural networks  36
RNNs of RNNs: Recursive Construction of Stable Assemblies of...
收藏 引用
36th Conference on neural Information processing Systems (NeurIPS)
作者: Kozachkov, Leo Ennis, Michaela Slotine, Jean-Jacques MIT Dept Brain & Cognit Sci Cambridge MA 02139 USA Harvard Univ Div Med Sci Cambridge MA 02138 USA MIT Dept Mech Engn Cambridge MA 02139 USA Google AI Mountain View CA USA
Recurrent neural networks (RNNs) are widely used throughout neuroscience as models of local neural activity. Many properties of single RNNs are well characterized theoretically, but experimental neuroscience has moved... 详细信息
来源: 评论