咨询与建议

限定检索结果

文献类型

  • 5,806 篇 会议
  • 3,344 篇 期刊文献
  • 103 册 图书
  • 92 篇 学位论文
  • 3 篇 科技报告
  • 3 篇 资讯
  • 1 篇 专利

馆藏范围

  • 9,353 篇 电子文献
  • 3 种 纸本馆藏

日期分布

学科分类号

  • 6,680 篇 工学
    • 3,394 篇 电气工程
    • 3,194 篇 计算机科学与技术...
    • 1,620 篇 软件工程
    • 1,430 篇 信息与通信工程
    • 847 篇 电子科学与技术(可...
    • 798 篇 生物医学工程(可授...
    • 552 篇 控制科学与工程
    • 530 篇 生物工程
    • 500 篇 光学工程
    • 329 篇 仪器科学与技术
    • 310 篇 机械工程
    • 161 篇 测绘科学与技术
    • 105 篇 化学工程与技术
    • 77 篇 材料科学与工程(可...
    • 50 篇 航空宇航科学与技...
  • 2,328 篇 理学
    • 1,230 篇 物理学
    • 716 篇 数学
    • 617 篇 生物学
    • 286 篇 系统科学
    • 255 篇 统计学(可授理学、...
    • 178 篇 化学
    • 80 篇 地球物理学
    • 48 篇 天文学
  • 2,156 篇 医学
    • 1,697 篇 临床医学
    • 283 篇 基础医学(可授医学...
    • 166 篇 特种医学
    • 98 篇 药学(可授医学、理...
    • 75 篇 医学技术(可授医学...
  • 470 篇 管理学
    • 289 篇 管理科学与工程(可...
    • 190 篇 图书情报与档案管...
  • 60 篇 农学
  • 33 篇 法学
  • 29 篇 艺术学
  • 15 篇 经济学
  • 15 篇 教育学
  • 8 篇 军事学
  • 6 篇 文学
  • 1 篇 哲学
  • 1 篇 历史学

主题

  • 1,007 篇 neural networks
  • 1,005 篇 deep learning
  • 723 篇 convolutional ne...
  • 612 篇 feature extracti...
  • 573 篇 signal processin...
  • 475 篇 convolutional ne...
  • 427 篇 image segmentati...
  • 427 篇 image processing
  • 380 篇 training
  • 277 篇 convolution
  • 251 篇 image reconstruc...
  • 238 篇 stochastic proce...
  • 189 篇 machine learning
  • 179 篇 image restoratio...
  • 172 篇 signal processin...
  • 167 篇 deep neural netw...
  • 164 篇 computational mo...
  • 155 篇 image classifica...
  • 146 篇 image coding
  • 138 篇 neural network

机构

  • 30 篇 univ chinese aca...
  • 26 篇 peng cheng lab p...
  • 24 篇 tianjin univ sch...
  • 19 篇 nanyang technol ...
  • 18 篇 xidian univ sch ...
  • 18 篇 tsinghua univ de...
  • 14 篇 university of sc...
  • 14 篇 univ sci & techn...
  • 14 篇 harbin inst tech...
  • 14 篇 xidian univ natl...
  • 13 篇 shanghai univ sc...
  • 13 篇 northwestern pol...
  • 12 篇 beijing inst tec...
  • 12 篇 university of el...
  • 12 篇 school of electr...
  • 12 篇 university of ch...
  • 12 篇 shanghai jiao to...
  • 12 篇 south china univ...
  • 11 篇 shanghai jiao to...
  • 11 篇 shanghai jiao to...

作者

  • 16 篇 zhang yan
  • 15 篇 eldar yonina c.
  • 13 篇 liu dong
  • 13 篇 zhang lei
  • 12 篇 li li
  • 12 篇 liu xin
  • 12 篇 gabbouj moncef
  • 12 篇 zhai guangtao
  • 11 篇 li yang
  • 11 篇 wang yan
  • 10 篇 yang bin
  • 10 篇 wang wei
  • 10 篇 arguello henry
  • 9 篇 kamata sei-ichir...
  • 9 篇 li sumei
  • 9 篇 liu ying
  • 9 篇 yang yang
  • 9 篇 liu hongwei
  • 9 篇 lian qiusheng
  • 9 篇 sohn kwanghoon

语言

  • 8,747 篇 英文
  • 259 篇 其他
  • 257 篇 中文
  • 37 篇 法文
  • 37 篇 土耳其文
  • 5 篇 俄文
  • 2 篇 德文
  • 2 篇 朝鲜文
  • 1 篇 西班牙文
  • 1 篇 日文
  • 1 篇 斯洛文尼亚文
检索条件"任意字段=Neural and Stochastic Methods in Image and Signal Processing"
9353 条 记 录,以下是1-10 订阅
排序:
Research and application of composite stochastic resonance in enhancement detection
收藏 引用
Chinese Physics B 2024年 第1期33卷 264-273页
作者: 高蕊 焦尚彬 薛琼婕 School of Automation and Information Engineering Xi'an University of TechnologyXi'an 710048China School of Electronic and Electrical Engineering Baoji University of Arts and SciencesBaoji 721016China Shaanxi Key Laboratory of Complex System Control and Intelligent Information Processing Xi'an University of TechnologyXi'an 710048China
Aiming at the problem that the intermediate potential part of the traditional bistable stochastic resonance model cannot be adjusted independently, a new composite stochastic resonance(NCSR) model is proposed by combi... 详细信息
来源: 评论
stochastic model calibration with image encoding: Converting high-dimensional sequential responses into RGB images for neural network inversion
收藏 引用
MECHANICAL SYSTEMS AND signal processing 2025年 230卷
作者: Bi, Sifeng Yun, Qi Zhao, Yanlin Wang, Hongsen Beihang Univ Hangzhou Int Innovat Inst Hangzhou 310023 Peoples R China Beihang Univ Sch Reliabil & Syst Engn Beijing 100191 Peoples R China Beihang Univ Inst Reliabil Engn Beijing 100191 Peoples R China Univ Southampton Dept Aeronaut & Astronaut Southampton England Univ Sci & Technol Beijing Sch Mech Engn Beijing Peoples R China Univ Sci & Technol Beijing Shunde Innovat Sch Guangzhou Peoples R China
This paper proposes an inverse neural network approach for stochastic model calibration, focusing on the conversion of high-dimensional system sequential responses into RGB (Red, Green, and Blue) images, which signifi... 详细信息
来源: 评论
A survey on Deep image Prior for image denoising
收藏 引用
DIGITAL signal processing 2025年 163卷
作者: Zhang, Cheng Yen, Kin Sam Univ Sains Malaysia Sch Mech Engn Engn Campus Nibong Tebal 14300 Penang Malaysia
Deep image Prior (DIP) has gained attention as a promising approach that bridges traditional hand-crafted priors and deep learning-based models. By utilizing a convolutional neural network (CNN) structure with "z... 详细信息
来源: 评论
EICNet: An End-to-End Efficient Learning-Based image Compression Network
收藏 引用
IEEE ACCESS 2024年 12卷 142668-142676页
作者: Cheng, Ziyi Univ Manchester Dept Elect & Elect Engn Manchester M13 9PL Lancs England
In the era of large-scale data, the role of image compression in computer vision(CV) and computer graphics(CG) tasks is increasingly critical. Traditional methods of image compression have reached their potential limi... 详细信息
来源: 评论
Spatio-Temporal Convolutional neural Network for Enhanced Inter Prediction in Video Coding
收藏 引用
IEEE TRANSACTIONS ON image processing 2024年 33卷 4738-4752页
作者: Merkle, Philipp Winken, Martin Pfaff, Jonathan Schwarz, Heiko Marpe, Detlev Wiegand, Thomas Heinrich Hertz Inst Nachrichtentech Berlin GmbH Fraunhofer Inst Telecommun Video Commun & Applicat Dept D-10587 Berlin Germany Free Univ Berlin Inst Comp Sci D-14195 Berlin Germany Heinrich Hertz Inst Nachrichtentech Berlin GmbH Fraunhofer Inst Telecommun D-10587 Berlin Germany Tech Univ Berlin Dept Telecommun Syst D-10587 Berlin Germany
This paper presents a convolutional neural network (CNN)-based enhancement to inter prediction in Versatile Video Coding (VVC). Our approach aims at improving the prediction signal of inter blocks with a residual CNN ... 详细信息
来源: 评论
ISP Meets Deep Learning: A Survey on Deep Learning methods for image signal processing
收藏 引用
ACM COMPUTING SURVEYS 2025年 第5期57卷 1-44页
作者: dos Santos, Claudio Filipi Goncalves Arrais, Rodrigo Reis da Silva, Jhessica Victoria Santos da Silva, Matheus Henrique Marques Neto, Wladimir Barroso Guedes de Araujo Lopes, Leonardo Tadeu Bileki, Guilherme Augusto Lima, Iago Oliveira Rondon, Lucas Borges de Souza, Bruno Melo Regazio, Mayara Costa Dalapicola, Rodolfo Coelho Tasca, Arthur Alves Univ Fed Sao Carlos Comp Sci Sao Carlos Brazil Eldorado Inst Campinas Brazil
The entire image signal Processor (ISP) of a camera relies on several processes to transform the data from the Color Filter Array (CFA) sensor, such as demosaicing, denoising, and enhancement. These processes can be e... 详细信息
来源: 评论
Research on image steganography based on a conditional invertible neural network
收藏 引用
signal image AND VIDEO processing 2025年 第3期19卷 1-13页
作者: Liang, Menghua Zhao, Hongtu Henan Polytech Univ Sch Phys & Elect Informat Engn Jiaozuo 454003 Henan Peoples R China
To improve the imperceptibility of image steganography, an image steganography method based on a conditional invertible neural network is proposed in this paper. First, we design a conditional invertible neural networ... 详细信息
来源: 评论
Robust stochastically-Descending Unrolled Networks
收藏 引用
IEEE TRANSACTIONS ON signal processing 2024年 72卷 5484-5499页
作者: Hadou, Samar Naderializadeh, Navid Ribeiro, Alejandro Univ Penn Dept Elect & Syst Engn Philadelphia PA 19104 USA Duke Univ Dept Biostat & Bioinformat Durham NC 27705 USA
Deep unrolling, or unfolding, is an emerging learning-to-optimize method that unrolls a truncated iterative algorithm in the layers of a trainable neural network. However, the convergence guarantees and generalizabili... 详细信息
来源: 评论
stochastic Gauss-Seidel type inertial proximal alternating linearized minimization and its application to proximal neural networks
收藏 引用
MATHEMATICAL methods OF OPERATIONS RESEARCH 2024年 第1-2期99卷 39-74页
作者: Wang, Qingsong Han, Deren Xiangtan Univ Sch Math & Computat Sci Xiangtan 411105 Peoples R China
In many optimization problems arising from machine learning, image processing, and statistics communities, the objective functions possess a special form involving huge amounts of data, which encourages the applicatio... 详细信息
来源: 评论
Enhanced Quantified Local Implicit neural Representation for image Compression
收藏 引用
IEEE signal processing LETTERS 2023年 30卷 1742-1746页
作者: Zhang, Gai Zhang, Xinfeng Tang, Lv Univ Chinese Acad Sci Sch Comp Sci & Technol Beijing 100049 Peoples R China
Recently, implicit neural representation (INR) has been applied to image compression. However, the rate-distortion performance of most existing INR-based image compression methods is still obviously inferior to the st... 详细信息
来源: 评论