咨询与建议

限定检索结果

文献类型

  • 5,806 篇 会议
  • 3,344 篇 期刊文献
  • 103 册 图书
  • 92 篇 学位论文
  • 3 篇 科技报告
  • 3 篇 资讯
  • 1 篇 专利

馆藏范围

  • 9,353 篇 电子文献
  • 3 种 纸本馆藏

日期分布

学科分类号

  • 6,680 篇 工学
    • 3,394 篇 电气工程
    • 3,194 篇 计算机科学与技术...
    • 1,620 篇 软件工程
    • 1,430 篇 信息与通信工程
    • 847 篇 电子科学与技术(可...
    • 798 篇 生物医学工程(可授...
    • 552 篇 控制科学与工程
    • 530 篇 生物工程
    • 500 篇 光学工程
    • 329 篇 仪器科学与技术
    • 310 篇 机械工程
    • 161 篇 测绘科学与技术
    • 105 篇 化学工程与技术
    • 77 篇 材料科学与工程(可...
    • 50 篇 航空宇航科学与技...
  • 2,328 篇 理学
    • 1,230 篇 物理学
    • 716 篇 数学
    • 617 篇 生物学
    • 286 篇 系统科学
    • 255 篇 统计学(可授理学、...
    • 178 篇 化学
    • 80 篇 地球物理学
    • 48 篇 天文学
  • 2,156 篇 医学
    • 1,697 篇 临床医学
    • 283 篇 基础医学(可授医学...
    • 166 篇 特种医学
    • 98 篇 药学(可授医学、理...
    • 75 篇 医学技术(可授医学...
  • 470 篇 管理学
    • 289 篇 管理科学与工程(可...
    • 190 篇 图书情报与档案管...
  • 60 篇 农学
  • 33 篇 法学
  • 29 篇 艺术学
  • 15 篇 经济学
  • 15 篇 教育学
  • 8 篇 军事学
  • 6 篇 文学
  • 1 篇 哲学
  • 1 篇 历史学

主题

  • 1,007 篇 neural networks
  • 1,005 篇 deep learning
  • 723 篇 convolutional ne...
  • 612 篇 feature extracti...
  • 573 篇 signal processin...
  • 475 篇 convolutional ne...
  • 427 篇 image segmentati...
  • 427 篇 image processing
  • 380 篇 training
  • 277 篇 convolution
  • 251 篇 image reconstruc...
  • 238 篇 stochastic proce...
  • 189 篇 machine learning
  • 179 篇 image restoratio...
  • 172 篇 signal processin...
  • 167 篇 deep neural netw...
  • 164 篇 computational mo...
  • 155 篇 image classifica...
  • 146 篇 image coding
  • 138 篇 neural network

机构

  • 30 篇 univ chinese aca...
  • 26 篇 peng cheng lab p...
  • 24 篇 tianjin univ sch...
  • 19 篇 nanyang technol ...
  • 18 篇 xidian univ sch ...
  • 18 篇 tsinghua univ de...
  • 14 篇 university of sc...
  • 14 篇 univ sci & techn...
  • 14 篇 harbin inst tech...
  • 14 篇 xidian univ natl...
  • 13 篇 shanghai univ sc...
  • 13 篇 northwestern pol...
  • 12 篇 beijing inst tec...
  • 12 篇 university of el...
  • 12 篇 school of electr...
  • 12 篇 university of ch...
  • 12 篇 shanghai jiao to...
  • 12 篇 south china univ...
  • 11 篇 shanghai jiao to...
  • 11 篇 shanghai jiao to...

作者

  • 16 篇 zhang yan
  • 15 篇 eldar yonina c.
  • 13 篇 liu dong
  • 13 篇 zhang lei
  • 12 篇 li li
  • 12 篇 liu xin
  • 12 篇 gabbouj moncef
  • 12 篇 zhai guangtao
  • 11 篇 li yang
  • 11 篇 wang yan
  • 10 篇 yang bin
  • 10 篇 wang wei
  • 10 篇 arguello henry
  • 9 篇 kamata sei-ichir...
  • 9 篇 li sumei
  • 9 篇 liu ying
  • 9 篇 yang yang
  • 9 篇 liu hongwei
  • 9 篇 lian qiusheng
  • 9 篇 sohn kwanghoon

语言

  • 8,747 篇 英文
  • 259 篇 其他
  • 257 篇 中文
  • 37 篇 法文
  • 37 篇 土耳其文
  • 5 篇 俄文
  • 2 篇 德文
  • 2 篇 朝鲜文
  • 1 篇 西班牙文
  • 1 篇 日文
  • 1 篇 斯洛文尼亚文
检索条件"任意字段=Neural and Stochastic Methods in Image and Signal Processing"
9353 条 记 录,以下是151-160 订阅
排序:
Distributed stochastic Gradient Tracking Algorithm With Variance Reduction for Non-Convex Optimization
收藏 引用
IEEE TRANSACTIONS ON neural NETWORKS AND LEARNING SYSTEMS 2023年 第9期34卷 5310-5321页
作者: Jiang, Xia Zeng, Xianlin Sun, Jian Chen, Jie Beijing Inst Technol Sch Automat Key Lab Intelligent Control & Decis Complex Syst Beijing 100081 Peoples R China Beijing Inst Technol Chongqing Innovat Ctr Chongqing 401120 Peoples R China Tongji Univ Sch Elect & Informat Engn Shanghai 200082 Peoples R China
This article proposes a distributed stochastic algorithm with variance reduction for general smooth non-convex finite-sum optimization, which has wide applications in signal processing and machine learning communities... 详细信息
来源: 评论
A flow-based multi-scale learning network for single image stochastic super-resolution
收藏 引用
signal processing-image COMMUNICATION 2024年 125卷
作者: Wu, Qianyu Hu, Zhongqian Zhu, Aichun Tang, Hui Zou, Jiaxin Xi, Yan Chen, Yang Southeast Univ Sch Comp Sci & Engn Nanjing Peoples R China Southeast Univ Sch Cyber Sci Engn Nanjing Peoples R China Southeast Univ Sch Med Nanjing Peoples R China Nanjing Tech Univ Sch Comp Sci & Technol Nanjing Peoples R China Jiangsu First Imaging Med Equipment Co Ltd Nantong Jiangsu Peoples R China
Single image super -resolution (SISR) is still an important while challenging task. Existing methods usually ignore the diversity of generated Super -Resolution (SR) images. The fine details of the corresponding highr... 详细信息
来源: 评论
Research on image Segmentation methods of Highway Pavement Distress based on Semantic Segmentation Convolutional neural Network
Research on Image Segmentation Methods of Highway Pavement D...
收藏 引用
9th International Conference on signal and image processing (ICSIP)
作者: Shao, Yongjun Zhang, Ziyi Wang, Xingang Zhao, Chihang Zheng, Youfeng Ma, Xinyi Deng, Wenhao Huang, Yaxin Shaanxi Expressway Engn Testing & Testing Co Ltd Xian Peoples R China Southeast Univ Sch Transportat Nanjing Peoples R China
Aiming at the problem that the image segmentation accuracy of highway pavement distress is easily affected by complex texture, noisy background, uneven illumination conditions and external environmental interference, ... 详细信息
来源: 评论
Mamba-Based Unet for Hyperspectral image Denoising
收藏 引用
IEEE signal processing LETTERS 2025年 32卷 1411-1415页
作者: Zhu, Zhiliang Chen, Yongyuan Zhang, Siyi Luo, Guoliang Zeng, Jiyong East China Jiaotong Univ Sch Informat & Software Engn Nanchang 330013 Peoples R China Lianchuang Elect Technol Co Ltd Nanchang 330013 Peoples R China
Hyperspectral image denoising is crucial for accurate extraction of spectral information. However, current convolutional neural network (CNN)-based methods have inherent limitations, while Transformer- based methods s... 详细信息
来源: 评论
Optoacoustic signal processing for image restoration based on neural networks
Applied Physics
收藏 引用
Applied Physics 2023年 第1期 10-14页
作者: Kravchuk, D.A. Southern Federal University Bld. E 2 Schevchenko st. Taganrog347922 Russia
The paper considers methods for processing an acoustic signal obtained with an optoacoustic effect in a liquid. A 12-layer convolutional neural network is proposed, trained by minimizing the loss of the mean square de... 详细信息
来源: 评论
Spstnet: image super-resolution using spatial pyramid swin transformer network
收藏 引用
signal image AND VIDEO processing 2025年 第4期19卷 1-14页
作者: Sun, Yemei Wang, Jiao Yang, Yue Zhang, Yan Tianjin Chengjian Univ Sch Comp & Informat Engn 26Jinjing Rd Tianjin 300384 Peoples R China
Recent research on enhancing image resolution using convolutional neural networks (CNNs) have shown encouraging outcomes. While due to the intrinsic locality of the convolution operator, CNN-based methods limit the ca... 详细信息
来源: 评论
SKIN TONE DISENTANGLEMENT IN 2D MAKEUP TRANSFER WITH GRAPH neural NETWORKS  49
SKIN TONE DISENTANGLEMENT IN 2D MAKEUP TRANSFER WITH GRAPH N...
收藏 引用
49th IEEE International Conference on Acoustics, Speech, and signal processing (ICASSP)
作者: Mokhtari, Masoud Dezaki, Fatemeh Taheri Bolkart, Timo Tesch, Betty Mohler Suresh, Rahul Banitalebi-Dehkordi, Amin Amazon BeautyTech Seattle WA 98109 USA
Makeup transfer involves transferring makeup from a reference image to a target image while maintaining the target's identity. Existing methods, which use Generative Adversarial Networks, often transfer not just m... 详细信息
来源: 评论
Efficient Fine-Tuning with Domain Adaptation for Privacy-Preserving Vision Transformer
收藏 引用
APSIPA TRANSACTIONS ON signal AND INFORMATION processing 2024年 第1期13卷
作者: Nagamori, Teru Shiota, Sayaka Kiya, Hitoshi Tokyo Metropolitan Univ 6-6 Asahigaoka Hino Tokyo Japan
We propose a novel method for privacy-preserving deep neural networks (DNNs) with the Vision Transformer (ViT). The method allows us not only to train models and test with visually protected images but to also avoid t... 详细信息
来源: 评论
Structured Directional Pruning via Perturbation Orthogonal Projection
收藏 引用
IEEE TRANSACTIONS ON signal processing 2024年 72卷 5439-5453页
作者: Liu, Xiaofeng Wang, Qing Shao, Yunfeng Geng, Yanhui Li, Yinchuan Tianjin Univ Sch Elect & Informat Engn Tianjin 300072 Peoples R China Huawei Noahs Ark Lab Beijing 100085 Peoples R China
Despite the great potential of artificial intelligence (AI), which promotes machines to mimic human intelligence in performing tasks, it requires a deep/extensive model with a sufficient number of parameters to enhanc... 详细信息
来源: 评论
FusionOpt-Net: A Transformer-Based Compressive Sensing Reconstruction Algorithm
收藏 引用
SENSORS 2024年 第18期24卷 5976页
作者: Zhang, Honghao Chen, Bi Gao, Xianwei Yao, Xiang Hou, Linyu Beijing Elect Sci & Technol Inst Beijing 100070 Peoples R China
Compressive sensing (CS) is a notable technique in signal processing, especially in multimedia, as it allows for simultaneous signal acquisition and dimensionality reduction. Recent advancements in deep learning (DL) ... 详细信息
来源: 评论