咨询与建议

限定检索结果

文献类型

  • 5,832 篇 会议
  • 3,366 篇 期刊文献
  • 102 册 图书
  • 76 篇 学位论文
  • 3 篇 资讯
  • 1 篇 专利

馆藏范围

  • 9,382 篇 电子文献
  • 3 种 纸本馆藏

日期分布

学科分类号

  • 6,714 篇 工学
    • 3,420 篇 电气工程
    • 3,217 篇 计算机科学与技术...
    • 1,634 篇 软件工程
    • 1,446 篇 信息与通信工程
    • 859 篇 电子科学与技术(可...
    • 793 篇 生物医学工程(可授...
    • 559 篇 控制科学与工程
    • 520 篇 光学工程
    • 505 篇 生物工程
    • 330 篇 仪器科学与技术
    • 311 篇 机械工程
    • 161 篇 测绘科学与技术
    • 106 篇 化学工程与技术
    • 76 篇 材料科学与工程(可...
    • 50 篇 航空宇航科学与技...
  • 2,306 篇 理学
    • 1,210 篇 物理学
    • 713 篇 数学
    • 618 篇 生物学
    • 286 篇 系统科学
    • 254 篇 统计学(可授理学、...
    • 153 篇 化学
    • 83 篇 地球物理学
    • 49 篇 天文学
  • 2,155 篇 医学
    • 1,689 篇 临床医学
    • 284 篇 基础医学(可授医学...
    • 145 篇 特种医学
    • 98 篇 药学(可授医学、理...
    • 52 篇 医学技术(可授医学...
  • 473 篇 管理学
    • 286 篇 管理科学与工程(可...
    • 195 篇 图书情报与档案管...
  • 63 篇 农学
  • 34 篇 法学
  • 29 篇 艺术学
  • 16 篇 教育学
  • 14 篇 经济学
  • 8 篇 军事学
  • 6 篇 文学
  • 1 篇 哲学
  • 1 篇 历史学

主题

  • 1,012 篇 deep learning
  • 1,006 篇 neural networks
  • 740 篇 convolutional ne...
  • 617 篇 feature extracti...
  • 579 篇 signal processin...
  • 476 篇 convolutional ne...
  • 435 篇 image segmentati...
  • 421 篇 image processing
  • 380 篇 training
  • 276 篇 convolution
  • 248 篇 image reconstruc...
  • 239 篇 stochastic proce...
  • 187 篇 machine learning
  • 179 篇 image restoratio...
  • 178 篇 signal processin...
  • 169 篇 computational mo...
  • 166 篇 deep neural netw...
  • 154 篇 image classifica...
  • 147 篇 image coding
  • 139 篇 visualization

机构

  • 30 篇 univ chinese aca...
  • 26 篇 peng cheng lab p...
  • 24 篇 tianjin univ sch...
  • 19 篇 nanyang technol ...
  • 18 篇 xidian univ sch ...
  • 18 篇 tsinghua univ de...
  • 15 篇 university of sc...
  • 14 篇 univ sci & techn...
  • 14 篇 harbin inst tech...
  • 14 篇 xidian univ natl...
  • 13 篇 university of el...
  • 13 篇 shanghai univ sc...
  • 13 篇 northwestern pol...
  • 12 篇 beijing inst tec...
  • 12 篇 school of electr...
  • 12 篇 university of ch...
  • 12 篇 shanghai jiao to...
  • 12 篇 south china univ...
  • 11 篇 shanghai jiao to...
  • 11 篇 shanghai jiao to...

作者

  • 16 篇 zhang yan
  • 15 篇 eldar yonina c.
  • 13 篇 liu dong
  • 13 篇 zhang lei
  • 12 篇 li li
  • 12 篇 liu xin
  • 12 篇 gabbouj moncef
  • 12 篇 zhai guangtao
  • 11 篇 li yang
  • 11 篇 wang yan
  • 10 篇 yang bin
  • 10 篇 wang wei
  • 9 篇 kamata sei-ichir...
  • 9 篇 li sumei
  • 9 篇 liu ying
  • 9 篇 yang yang
  • 9 篇 liu hongwei
  • 9 篇 lian qiusheng
  • 9 篇 sohn kwanghoon
  • 9 篇 li bo

语言

  • 8,557 篇 英文
  • 486 篇 其他
  • 258 篇 中文
  • 37 篇 法文
  • 37 篇 土耳其文
  • 5 篇 俄文
  • 2 篇 德文
  • 2 篇 朝鲜文
  • 1 篇 阿拉伯文
  • 1 篇 西班牙文
  • 1 篇 日文
  • 1 篇 斯洛文尼亚文
检索条件"任意字段=Neural and Stochastic Methods in Image and Signal Processing"
9382 条 记 录,以下是11-20 订阅
Tensor Completion Network for Visual Data
收藏 引用
IEEE TRANSACTIONS ON signal processing 2025年 73卷 386-400页
作者: Wang, Xiang-Yu Li, Xiao-Peng Sidiropoulos, Nicholas D. So, Hing Cheung City Univ Hong Kong Dept Elect Engn Hong Kong Peoples R China Shenzhen Univ State Key Lab Radio Frequency Heterogeneous Integr Shenzhen 518060 Peoples R China Univ Virginia Dept Elect & Comp Engn Charlottesville VA 22904 USA
Tensor completion aims at filling in the missing elements of an incomplete tensor based on its partial observations, which is a popular approach for image inpainting. Most existing methods for visual data recovery can... 详细信息
来源: 评论
Learning Local Contrast for Crisp Edge Detection
收藏 引用
Journal of Computer Science & Technology 2023年 第3期38卷 554-566页
作者: 方晓楠 张松海 Department of Computer Science and Technology Tsinghua UniversityBeijing 100084China
In recent years, the accuracy of edge detection on several benchmarks has been significantly improved by deep learning based methods. However, the prediction of deep neural networks is usually blurry and needs further... 详细信息
来源: 评论
Hypercomplex signal and image processing: Part 2 [From the Guest Editors]
收藏 引用
IEEE signal processing MAGAZINE 2024年 第3期41卷 18-20页
作者: Valous, Nektarios A. Hitzer, Eckhard Vitabile, Salvatore Bernstein, Swanhild Lavor, Carlile Abbott, Derek Luna-Elizarraras, Maria Elena Lopes, Wilder German Canc Res Ctr D-69120 Heidelberg Germany Natl Ctr Tumor Dis Heidelberg D-69120 Heidelberg Germany Int Christian Univ Mitaka Tokyo 1818585 Japan Univ Palermo Dept Biomed Neurosci & Adv Diagnost Comp Sci I-90127 Palermo Italy TU Bergakademie Freiberg Inst Appl Anal D-09599 Freiberg Germany Univ Estadual Campinas Dept Appl Math BR-13083859 Campinas Brazil Univ Adelaide Adelaide SA 5005 Australia Holon Inst Technol HIT Holon 5810201 Israel Ogre run Tulsa OK 74114 USA
Hypercomplex signal and image processing extends upon conventional methods by using hypercomplex numbers in a unified framework for algebra and geometry. The special issue is divided into two parts and is focused on c... 详细信息
来源: 评论
Enhanced prediction using deep neural network-based image classification
收藏 引用
IMAGING SCIENCE JOURNAL 2023年 第5期71卷 472-483页
作者: Ramalakshmi, K. Raghavan, V. Srinivasa PSR Engn Coll Elect & Commun Engn Sivakasi Tamil Nadu 626140 India Theni Kammavar Sangam Coll Technol Elect & Commun Engn Theni Tamil Nadu India
The need for deep convolutional neural network is increasing for medical image classification because it provides good performance. This work elucidates the significance of convolutional neural network in making effec... 详细信息
来源: 评论
Unsupervised change detection using dynamic threshold neural P systems for SAR images
收藏 引用
signal image AND VIDEO processing 2025年 第7期19卷 1-8页
作者: Lugu, Rikong Yang, Qian Peng, Hong Xihua Univ Sch Comp & Software Engn Chengdu 610039 Sichuan Peoples R China
Dynamic threshold neural P (DTNP) systems are neural-like computing models. This paper discusses how to use DTNP systems to propose a new change detection for SAR images. DTNP systems have two intrinsic and recognizab... 详细信息
来源: 评论
Breaking the rain barrier: A novel approach in image processing with AMGR-Net
收藏 引用
IET image processing 2024年 第13期18卷 4381-4393页
作者: Li, Hongxu Zhang, Wenpeng Li, Xueting Li, Chen Wuxi Univ Sch Elect & Informat Engn Wuxi Peoples R China Nanjing Univ Informat Sci & Technol Sch Elect & Informat Engn Nanjing Peoples R China Wuxi Univ Jiangsu Prov Engn Res Ctr Integrated Circuit Relia Wuxi Peoples R China
image quality is significantly impacted by rain, posing challenges in fields like surveillance, autonomous driving, and outdoor robotics. The field of image deraining, particularly for single image, has attracted cons... 详细信息
来源: 评论
An adaptive image compression algorithm based on joint clustering algorithm and deep learning
收藏 引用
IET image processing 2024年 第3期18卷 829-837页
作者: Liang, Yanxia Liu, Xin Lu, Guangyue Zhao, Meng Jiang, Jing Jia, Tong Xian Univ Posts & Telecommun Shaanxi Key Lab Informat Commun Network & Secur Xian Peoples R China Xian Eurasia Univ Sch Informat Engn Xian Peoples R China
In recent years, deep artificial neural networks have attracted much attention and have been applied in various fields because they surpass the parameter fitting effect of traditional methods under the condition of da... 详细信息
来源: 评论
Ncst: neural-based color style transfer for video retouching
收藏 引用
signal image AND VIDEO processing 2025年 第6期19卷 1-11页
作者: Jiang, Xintao Chen, Yaosen Zhang, Siqin Wang, Wei Wen, Xuming Sichuan Univ Pittsburgh Inst Chengdu 610065 Sichuan Peoples R China Sobey Media Intelligence Lab Chengdu 610041 Sichuan Peoples R China Univ Elect Sci & Technol China Chengdu 611731 Sichuan Peoples R China
Video color style transfer aims to transform the color style of an original video by using a reference style image. Most existing methods employ neural networks, which come with challenges like opaque transfer process... 详细信息
来源: 评论
Spiking neural network-based edge detection model for content-based image retrieval
收藏 引用
signal image AND VIDEO processing 2025年 第1期19卷 1-12页
作者: Incetas, Muersel Ozan Arslan, Rukiye Uzun Alanya Alaaddin Keykubat Univ Dept Comp Technol TR-07450 Alanya Antalya Turkiye Zonguldak Bulent Ecevit Univ Dept Elect & Elect Engn TR-67100 Zonguldak Turkiye
Content-based image retrieval (CBIR) techniques are widely used for extracting specific images from large databases. Recent studies have shown that edge features, alongside colors, align closely with human perception ... 详细信息
来源: 评论
Single-image super-resolution via a lightweight convolutional neural network with improved shuffle learning
收藏 引用
signal image AND VIDEO processing 2024年 第1期18卷 233-241页
作者: Lu, Xinbiao Xie, Xupeng Ye, Chunlin Xing, Hao Liu, Zecheng Chen, Yudan Hohai Univ Sch Energy & Elect Engn Nanjing 211100 Peoples R China
With the development of deep learning techniques, single-image super-resolution methods based on deep learning have made great progress, enabling significant improvements in image quality and detail reproduction. Howe... 详细信息
来源: 评论