咨询与建议

限定检索结果

文献类型

  • 5,804 篇 会议
  • 3,341 篇 期刊文献
  • 103 册 图书
  • 92 篇 学位论文
  • 3 篇 科技报告
  • 3 篇 资讯
  • 1 篇 专利

馆藏范围

  • 9,347 篇 电子文献
  • 3 种 纸本馆藏

日期分布

学科分类号

  • 6,675 篇 工学
    • 3,396 篇 电气工程
    • 3,198 篇 计算机科学与技术...
    • 1,627 篇 软件工程
    • 1,426 篇 信息与通信工程
    • 845 篇 电子科学与技术(可...
    • 788 篇 生物医学工程(可授...
    • 550 篇 控制科学与工程
    • 514 篇 光学工程
    • 507 篇 生物工程
    • 327 篇 仪器科学与技术
    • 312 篇 机械工程
    • 161 篇 测绘科学与技术
    • 106 篇 化学工程与技术
    • 77 篇 材料科学与工程(可...
    • 49 篇 航空宇航科学与技...
  • 2,300 篇 理学
    • 1,206 篇 物理学
    • 714 篇 数学
    • 616 篇 生物学
    • 286 篇 系统科学
    • 255 篇 统计学(可授理学、...
    • 153 篇 化学
    • 80 篇 地球物理学
    • 48 篇 天文学
  • 2,133 篇 医学
    • 1,674 篇 临床医学
    • 282 篇 基础医学(可授医学...
    • 143 篇 特种医学
    • 98 篇 药学(可授医学、理...
    • 53 篇 医学技术(可授医学...
  • 466 篇 管理学
    • 286 篇 管理科学与工程(可...
    • 189 篇 图书情报与档案管...
  • 61 篇 农学
  • 33 篇 法学
  • 29 篇 艺术学
  • 16 篇 教育学
  • 15 篇 经济学
  • 8 篇 军事学
  • 6 篇 文学
  • 1 篇 哲学
  • 1 篇 历史学

主题

  • 1,006 篇 neural networks
  • 1,001 篇 deep learning
  • 733 篇 convolutional ne...
  • 613 篇 feature extracti...
  • 573 篇 signal processin...
  • 474 篇 convolutional ne...
  • 433 篇 image segmentati...
  • 426 篇 image processing
  • 376 篇 training
  • 277 篇 convolution
  • 247 篇 image reconstruc...
  • 238 篇 stochastic proce...
  • 187 篇 machine learning
  • 178 篇 image restoratio...
  • 172 篇 signal processin...
  • 167 篇 computational mo...
  • 166 篇 deep neural netw...
  • 155 篇 image classifica...
  • 147 篇 image coding
  • 137 篇 neural network

机构

  • 30 篇 univ chinese aca...
  • 26 篇 peng cheng lab p...
  • 24 篇 tianjin univ sch...
  • 19 篇 nanyang technol ...
  • 18 篇 xidian univ sch ...
  • 18 篇 tsinghua univ de...
  • 14 篇 university of sc...
  • 14 篇 univ sci & techn...
  • 14 篇 harbin inst tech...
  • 14 篇 xidian univ natl...
  • 13 篇 university of el...
  • 13 篇 shanghai univ sc...
  • 13 篇 northwestern pol...
  • 12 篇 beijing inst tec...
  • 12 篇 school of electr...
  • 12 篇 university of ch...
  • 12 篇 shanghai jiao to...
  • 12 篇 south china univ...
  • 11 篇 shanghai jiao to...
  • 11 篇 shanghai jiao to...

作者

  • 16 篇 zhang yan
  • 15 篇 eldar yonina c.
  • 13 篇 liu dong
  • 13 篇 zhang lei
  • 12 篇 li li
  • 12 篇 liu xin
  • 12 篇 gabbouj moncef
  • 12 篇 zhai guangtao
  • 11 篇 li yang
  • 11 篇 wang yan
  • 10 篇 yang bin
  • 10 篇 wang wei
  • 10 篇 arguello henry
  • 9 篇 kamata sei-ichir...
  • 9 篇 li sumei
  • 9 篇 liu ying
  • 9 篇 yang yang
  • 9 篇 liu hongwei
  • 9 篇 lian qiusheng
  • 9 篇 sohn kwanghoon

语言

  • 8,772 篇 英文
  • 257 篇 中文
  • 228 篇 其他
  • 37 篇 法文
  • 37 篇 土耳其文
  • 5 篇 俄文
  • 2 篇 德文
  • 2 篇 朝鲜文
  • 1 篇 西班牙文
  • 1 篇 日文
  • 1 篇 斯洛文尼亚文
检索条件"任意字段=Neural and Stochastic Methods in Image and Signal Processing"
9347 条 记 录,以下是201-210 订阅
排序:
Dual-stream network with complementary fusion and hierarchical attention for image tampering localization
收藏 引用
signal image AND VIDEO processing 2025年 第3期19卷 1-14页
作者: Mao, Zhanpeng Lu, Tongwei Wuhan Inst Technol Sch Comp Sci & Engn Wuhan 430205 Hubei Peoples R China Wuhan Inst Technol Hubei Key Lab Intelligent Robot Wuhan 430205 Hubei Peoples R China
In recent years, with the rapid development of image editing technology, the trustworthiness of multimedia data is facing severe challenges, and the security risks caused by image tampering are increasing, which promo... 详细信息
来源: 评论
Bayesian Deep Learning via Expectation Maximization and Turbo Deep Approximate Message Passing
收藏 引用
IEEE TRANSACTIONS ON signal processing 2024年 72卷 3865-3878页
作者: Xu, Wei Liu, An Zhang, Yiting Lau, Vincent Zhejiang Univ Coll Informat Sci & Elect Engn Hangzhou 310027 Peoples R China Hong Kong Univ Sci & Technol Dept ECE Hong Kong Peoples R China
Efficient learning and model compression algorithm for deep neural network (DNN) is a key workhorse behind the rise of deep learning (DL). In this work, we propose a message passing-based Bayesian deep learning algori... 详细信息
来源: 评论
A Weak Anomaly signal Enhancement Method Based on Vector Magnetic Sensor
收藏 引用
IEEE Sensors Journal 2025年 第12期25卷 22479-22487页
作者: Sun, Hexuan Qiu, Jing Huang, Shuanglong Zeng, Xinjie Cao, Cong Liu, Libo Chongqing University Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China College of Optoelectronic Engineering Chongqing400044 China
In complex magnetic field detection scenarios, magnetic anomaly detection signals are often submerged in environmental magnetic noise and are difficult to identify. A new method for enhancing weak anomaly signals base... 详细信息
来源: 评论
Expressivity of Hidden Markov Chains vs. Recurrent neural Networks From a System Theoretic Viewpoint
收藏 引用
IEEE TRANSACTIONS ON signal processing 2023年 71卷 4178-4191页
作者: Desbouvries, Francois Petetin, Yohan Salaun, Achille Inst Polytech Paris Samovar Telecom SudParis F-91120 Palaiseau France Nokia Bell Labs Nozay France Univ Oxford Inst Biomed Engn Dept Engn Sci Oxford OX3 7DQ England
Hidden Markov Chains (HMC) and Recurrent neural Networks (RNN) are two well known tools for predicting time series. Even though these solutions were developed independently in distinct communities, they share some sim... 详细信息
来源: 评论
Direct sequence spread spectrum (DSSS) signal detection based on eigenvalues local binary pattern residual network (EL-ResNet)
收藏 引用
signal image AND VIDEO processing 2024年 第5期18卷 4741-4751页
作者: Wang, Bo Shen, Lei Wang, Huaxia Yao, Yudong Hangzhou Dianzi Univ Coll Commun Engn Hangzhou 310018 Zhejiang Peoples R China Oklahoma State Univ Coll Engn Architecture & Technol CEAT Stillwater OK 74078 USA Stevens Inst Technol Hoboken NJ 07030 USA
Direct sequence spread spectrum (DSSS) communications are highly significant in military and civilian wireless communications because of its ability to resist narrowband interference, multipath interference and high s... 详细信息
来源: 评论
Adaptive data-driven subsampling for efficient neural network inference
收藏 引用
signal image AND VIDEO processing 2024年 第6-7期18卷 5163-5171页
作者: Machidon, Alina L. Pejovic, Veljko Univ Ljubljana Fac Comp & Informat Sci Vecna Pot 113 Ljubljana 1000 Slovenia Inst Jozef Stefan Dept Comp Syst Jamova Cesta 39 Ljubljana 1000 Slovenia
In this paper we present a novel data-driven subsampling method that can be seamlessly integrated into any neural network architecture to identify the most informative subset of samples within the original acquisition... 详细信息
来源: 评论
MFCA-MICNN: a convolutional neural network with multiscale fast channel attention and multibranch irregular convolution for noise removal in dMRI
收藏 引用
PHYSICS IN MEDICINE AND BIOLOGY 2024年 第21期69卷 215003-215003页
作者: Ai, Lingmei Shi, Yunfan Yao, Ruoxia Li, Liangfu Shaanxi Normal Univ Sch Comp Sci 620West Changan Ave Xian 710119 Shaanxi Peoples R China
Diffusion magnetic resonance imaging (dMRI) currently stands as the foremost noninvasive method for quantifying brain tissue microstructure and reconstructing white matter fiber pathways. However, the inherent free di... 详细信息
来源: 评论
Distributed source DOA estimation based on deep learning networks
收藏 引用
signal image AND VIDEO processing 2024年 第10期18卷 7395-7403页
作者: Tian, Quan Cai, Ruiyan Qiu, Gongrun Luo, Yang Taizhou Univ Sch Elect & Informat Engn Taizhou 318000 Zhejiang Peoples R China Beijing 61618 Troops Beijing 100088 Peoples R China Peoples Liberat Army Gen Hosp Dept Orthoped Med Ctr 1 Beijing 100853 Peoples R China
With space electromagnetic environments becoming increasingly complex, the direction of arrival (DOA) estimation based on the point source model can no longer meet the requirements of spatial target location. Based on... 详细信息
来源: 评论
TPOT with SVM hybrid machine learning model for lung cancer classification using CT image
收藏 引用
BIOMEDICAL signal processing AND CONTROL 2025年 104卷
作者: Murthy, Nayana N. Thippeswamy, K. Visvesvaraya Technol Univ Dept Comp Sci & Engn Belagavi 590018 Karnataka India VTU PG Ctr Dept Comp Sci Engn Mysuru India Visvesvaraya Technol Univ Belagavi 590018 Karnataka India
Lung cancer arises when lung cells proliferate uncontrollably, creating tumors that may disrupt the normal functioning of the lungs. Accurate classification of lung cancer leads to earlier detection, which significant... 详细信息
来源: 评论
Enhancing Synthetic Reduced Nearest-Neighbor with Two-Layer neural Networks: A Step Forward in image Classification  37
Enhancing Synthetic Reduced Nearest-Neighbor with Two-Layer ...
收藏 引用
2024 International Workshop on signal processing Systems
作者: Alizadeh, Azar Singhal, Mukesh Univ Calif Merced Dept Elect Engn & Comp Sci Merced CA 95343 USA
Synthetic Reduced Nearest Neighbor (SRNN) models, operating exclusively on synthetic samples or prototypes, represent a significant stride in the field of nearest-neighbor algorithms. Central to this innovation is enh... 详细信息
来源: 评论