咨询与建议

限定检索结果

文献类型

  • 5,804 篇 会议
  • 3,341 篇 期刊文献
  • 103 册 图书
  • 92 篇 学位论文
  • 3 篇 科技报告
  • 3 篇 资讯
  • 1 篇 专利

馆藏范围

  • 9,347 篇 电子文献
  • 3 种 纸本馆藏

日期分布

学科分类号

  • 6,675 篇 工学
    • 3,396 篇 电气工程
    • 3,198 篇 计算机科学与技术...
    • 1,627 篇 软件工程
    • 1,426 篇 信息与通信工程
    • 845 篇 电子科学与技术(可...
    • 788 篇 生物医学工程(可授...
    • 550 篇 控制科学与工程
    • 514 篇 光学工程
    • 507 篇 生物工程
    • 327 篇 仪器科学与技术
    • 312 篇 机械工程
    • 161 篇 测绘科学与技术
    • 106 篇 化学工程与技术
    • 77 篇 材料科学与工程(可...
    • 49 篇 航空宇航科学与技...
  • 2,300 篇 理学
    • 1,206 篇 物理学
    • 714 篇 数学
    • 616 篇 生物学
    • 286 篇 系统科学
    • 255 篇 统计学(可授理学、...
    • 153 篇 化学
    • 80 篇 地球物理学
    • 48 篇 天文学
  • 2,133 篇 医学
    • 1,674 篇 临床医学
    • 282 篇 基础医学(可授医学...
    • 143 篇 特种医学
    • 98 篇 药学(可授医学、理...
    • 53 篇 医学技术(可授医学...
  • 466 篇 管理学
    • 286 篇 管理科学与工程(可...
    • 189 篇 图书情报与档案管...
  • 61 篇 农学
  • 33 篇 法学
  • 29 篇 艺术学
  • 16 篇 教育学
  • 15 篇 经济学
  • 8 篇 军事学
  • 6 篇 文学
  • 1 篇 哲学
  • 1 篇 历史学

主题

  • 1,006 篇 neural networks
  • 1,001 篇 deep learning
  • 733 篇 convolutional ne...
  • 613 篇 feature extracti...
  • 573 篇 signal processin...
  • 474 篇 convolutional ne...
  • 433 篇 image segmentati...
  • 426 篇 image processing
  • 376 篇 training
  • 277 篇 convolution
  • 247 篇 image reconstruc...
  • 238 篇 stochastic proce...
  • 187 篇 machine learning
  • 178 篇 image restoratio...
  • 172 篇 signal processin...
  • 167 篇 computational mo...
  • 166 篇 deep neural netw...
  • 155 篇 image classifica...
  • 147 篇 image coding
  • 137 篇 neural network

机构

  • 30 篇 univ chinese aca...
  • 26 篇 peng cheng lab p...
  • 24 篇 tianjin univ sch...
  • 19 篇 nanyang technol ...
  • 18 篇 xidian univ sch ...
  • 18 篇 tsinghua univ de...
  • 14 篇 university of sc...
  • 14 篇 univ sci & techn...
  • 14 篇 harbin inst tech...
  • 14 篇 xidian univ natl...
  • 13 篇 university of el...
  • 13 篇 shanghai univ sc...
  • 13 篇 northwestern pol...
  • 12 篇 beijing inst tec...
  • 12 篇 school of electr...
  • 12 篇 university of ch...
  • 12 篇 shanghai jiao to...
  • 12 篇 south china univ...
  • 11 篇 shanghai jiao to...
  • 11 篇 shanghai jiao to...

作者

  • 16 篇 zhang yan
  • 15 篇 eldar yonina c.
  • 13 篇 liu dong
  • 13 篇 zhang lei
  • 12 篇 li li
  • 12 篇 liu xin
  • 12 篇 gabbouj moncef
  • 12 篇 zhai guangtao
  • 11 篇 li yang
  • 11 篇 wang yan
  • 10 篇 yang bin
  • 10 篇 wang wei
  • 10 篇 arguello henry
  • 9 篇 kamata sei-ichir...
  • 9 篇 li sumei
  • 9 篇 liu ying
  • 9 篇 yang yang
  • 9 篇 liu hongwei
  • 9 篇 lian qiusheng
  • 9 篇 sohn kwanghoon

语言

  • 8,772 篇 英文
  • 257 篇 中文
  • 228 篇 其他
  • 37 篇 法文
  • 37 篇 土耳其文
  • 5 篇 俄文
  • 2 篇 德文
  • 2 篇 朝鲜文
  • 1 篇 西班牙文
  • 1 篇 日文
  • 1 篇 斯洛文尼亚文
检索条件"任意字段=Neural and Stochastic Methods in Image and Signal Processing"
9347 条 记 录,以下是281-290 订阅
排序:
INTELLIGENT MULTI-VIEW TEST TIME AUGMENTATION  31
INTELLIGENT MULTI-VIEW TEST TIME AUGMENTATION
收藏 引用
2024 International Conference on image processing
作者: Ozturk, Efe Prabhushankar, Mohit AlRegib, Ghassan Georgia Inst Technol OLIVES Ctr Signal & Informat Proc CSIP Sch Elect & Comp Engn Atlanta GA 30332 USA
In this study, we introduce an intelligent Test Time Augmentation (TTA) algorithm designed to enhance the robustness and accuracy of image classification models against viewpoint variations. Unlike traditional TTA met... 详细信息
来源: 评论
Edge-constraint based multi-scale contrastive learning for image deep clustering
收藏 引用
DIGITAL signal processing 2025年 163卷
作者: Zhu, Jiawei Wu, Xuegang Yang, Liu Chongqing Univ Technol Sch Comp Sci & Engn Comp Technol Chongqing Peoples R China Chongqing Univ Technol Sch Comp Sci & Engn Chongqing Peoples R China Chongqing Univ Posts & Telecommun Sch Commun Chongqing Peoples R China Chongqing Univ Posts & Telecommun Chongqing Engn Res Ctr Commun Software Chongqing Peoples R China Chongqing Univ Posts & Telecommun Yunyang Ind Technol Res Inst Chongqing Peoples R China
Deep clustering algorithms using deep neural networks are crucial across various fields. Contrastive learning benefited by diverse data augmentations has proven effective in improving clustering performance. However, ... 详细信息
来源: 评论
Computer-aided fusion-based neural network in application to categorize tomato plants
收藏 引用
signal image AND VIDEO processing 2023年 第7期17卷 3313-3321页
作者: Uppada, Rajyalakshmi Kumar, D. V. A. N. Ravi Aditya Engn Coll A ECE Dept Surampalem India Gayatri Vidya Parishad Coll Engn Women ECE Dept Visakhapatnam India
Pest's infection affects the crop production and annual income. From the past decade, many traditional methods anticipated the optimum accuracy while categorizing the infected tomato-plants. Every technique has th... 详细信息
来源: 评论
HQ-IRN: Quantizing High-Frequency Features for image Rescaling
收藏 引用
IEEE signal processing LETTERS 2024年 31卷 1985-1989页
作者: Song, Zibo Zhao, Qian Meng, Deyu Xi An Jiao Tong Univ Sch Math & Stat Xian 710049 Peoples R China
Saving and transmitting high-resolution (HR) images are often demanded in real life, especially in social media applications. The recently developed image rescaling techniques provide a storage and transmission econom... 详细信息
来源: 评论
A Practical SAR Despeckling Method Combining Swin Transformer and Residual CNN
收藏 引用
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS 2024年 21卷 1页
作者: Wang, Can Zheng, Rongyao Zhu, Jingzhen Xu, Wentao Li, Xiwen Huazhong Univ Sci & Technol State Key Lab Digital Mfg Equipment & Technol Wuhan 430074 Peoples R China
Speckle removal is a crucial preliminary step for synthetic aperture radar (SAR) image processing. In recent years, the application of deep neural networks toward solving SAR image despeckling problems has yielded com... 详细信息
来源: 评论
Application of Convolutional neural Network (CNN) and different other techniques for the restoration of degraded folk artworks: a comparative performance analysis
收藏 引用
JOURNAL OF OPTICS-INDIA 2024年 1-8页
作者: Das, Arijit Sarkar, Ram Krishna Dhar, Rudra Sankar Dutta, Manoj Kumar NIT Mizoram Dept Elect & Commun Engn Aizawl 796012 Mizoram India Birla Inst Technol Mesra Dept Phys Off Campus Deoghar Deoghar 814142 Jharkhand India
Folk art is an important manifestation of culture and heritage of a region. However, as these artworks are not properly cared for, so degrades very fast and lost permanently over the time. Restoration and proper prese... 详细信息
来源: 评论
GSBIQA: Green Saliency-guided Blind image Quality Assessment Method
GSBIQA: Green Saliency-guided Blind Image Quality Assessment...
收藏 引用
2024 Asia Pacific signal and Information processing Association Annual Summit and Conference
作者: Mei, Zhanxuan Wang, Yun-Cheng Kuo, C-C. Jay Univ Southern Calif Los Angeles CA 90007 USA
Blind image Quality Assessment (BIQA) is an essential task that estimates the perceptual quality of images without reference. While many BIQA methods employ deep neural networks (DNNs) and incorporate saliency detecto... 详细信息
来源: 评论
A dual-branch network for ultrasound image segmentation
收藏 引用
BIOMEDICAL signal processing AND CONTROL 2025年 103卷
作者: Zhu, Zhiqin Zhang, Zimeng Qi, Guanqiu Li, Yuanyuan Li, Yuzhen Mu, Lan Chongqing Univ Posts & Telecommun Coll Automat Chongqing 400065 Peoples R China SUNY Buffalo Comp Informat Syst Dept Buffalo NY 14222 USA Hosp Chongqing Univ Chongqing 400044 Peoples R China Chongqing Med Univ Women & Childrens Hosp Chongqing Hlth Ctr Women & Children Dept Ultrasonog Chongqing 401147 Peoples R China
Ultrasound image segmentation research is of great significance, especially in medical diagnosis and clinical treatment. However, speckle noise caused by reflections from different tissue types, irregular organ or les... 详细信息
来源: 评论
Fixed-Time State Observer-Based Robust Adaptive neural Fault-Tolerant Control for a Quadrotor Unmanned Aerial Vehicle
收藏 引用
INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND signal processing 2025年 第1期39卷 132-151页
作者: Ranjan, Sanjeev Majhi, Somanath Indian Inst Technol Guwahati Elect & Elect Engn Gauhati Assam India
This paper presents a fixed-time state observer-based robust adaptive neural fault-tolerant control (RANFTC) for attitude and altitude tracking and control of quadrotor unmanned aerial vehicles (UAVs), considering mul... 详细信息
来源: 评论
Generating synthetic data to train a deep unrolled network for Hyperspectral Unmixing  32
Generating synthetic data to train a deep unrolled network f...
收藏 引用
32nd European signal processing Conference (EUSIPCO)
作者: Hadjeres, Rassim Kervazo, Christophe Tupin, Florence Inst Polytech Paris LTCI Telecom Paris F-91120 Palaiseau France
Hyperspectral unmixing is an essential tool for analyzing hyperspectral data, especially in remote sensing. Many approaches have been developed for this problem, ranging from model-based to deep learning-based, and (h... 详细信息
来源: 评论