咨询与建议

限定检索结果

文献类型

  • 5,804 篇 会议
  • 3,341 篇 期刊文献
  • 103 册 图书
  • 92 篇 学位论文
  • 3 篇 科技报告
  • 3 篇 资讯
  • 1 篇 专利

馆藏范围

  • 9,347 篇 电子文献
  • 3 种 纸本馆藏

日期分布

学科分类号

  • 6,675 篇 工学
    • 3,396 篇 电气工程
    • 3,198 篇 计算机科学与技术...
    • 1,627 篇 软件工程
    • 1,426 篇 信息与通信工程
    • 845 篇 电子科学与技术(可...
    • 788 篇 生物医学工程(可授...
    • 550 篇 控制科学与工程
    • 514 篇 光学工程
    • 507 篇 生物工程
    • 327 篇 仪器科学与技术
    • 312 篇 机械工程
    • 161 篇 测绘科学与技术
    • 106 篇 化学工程与技术
    • 77 篇 材料科学与工程(可...
    • 49 篇 航空宇航科学与技...
  • 2,300 篇 理学
    • 1,206 篇 物理学
    • 714 篇 数学
    • 616 篇 生物学
    • 286 篇 系统科学
    • 255 篇 统计学(可授理学、...
    • 153 篇 化学
    • 80 篇 地球物理学
    • 48 篇 天文学
  • 2,133 篇 医学
    • 1,674 篇 临床医学
    • 282 篇 基础医学(可授医学...
    • 143 篇 特种医学
    • 98 篇 药学(可授医学、理...
    • 53 篇 医学技术(可授医学...
  • 466 篇 管理学
    • 286 篇 管理科学与工程(可...
    • 189 篇 图书情报与档案管...
  • 61 篇 农学
  • 33 篇 法学
  • 29 篇 艺术学
  • 16 篇 教育学
  • 15 篇 经济学
  • 8 篇 军事学
  • 6 篇 文学
  • 1 篇 哲学
  • 1 篇 历史学

主题

  • 1,006 篇 neural networks
  • 1,001 篇 deep learning
  • 733 篇 convolutional ne...
  • 613 篇 feature extracti...
  • 573 篇 signal processin...
  • 474 篇 convolutional ne...
  • 433 篇 image segmentati...
  • 426 篇 image processing
  • 376 篇 training
  • 277 篇 convolution
  • 247 篇 image reconstruc...
  • 238 篇 stochastic proce...
  • 187 篇 machine learning
  • 178 篇 image restoratio...
  • 172 篇 signal processin...
  • 167 篇 computational mo...
  • 166 篇 deep neural netw...
  • 155 篇 image classifica...
  • 147 篇 image coding
  • 137 篇 neural network

机构

  • 30 篇 univ chinese aca...
  • 26 篇 peng cheng lab p...
  • 24 篇 tianjin univ sch...
  • 19 篇 nanyang technol ...
  • 18 篇 xidian univ sch ...
  • 18 篇 tsinghua univ de...
  • 14 篇 university of sc...
  • 14 篇 univ sci & techn...
  • 14 篇 harbin inst tech...
  • 14 篇 xidian univ natl...
  • 13 篇 university of el...
  • 13 篇 shanghai univ sc...
  • 13 篇 northwestern pol...
  • 12 篇 beijing inst tec...
  • 12 篇 school of electr...
  • 12 篇 university of ch...
  • 12 篇 shanghai jiao to...
  • 12 篇 south china univ...
  • 11 篇 shanghai jiao to...
  • 11 篇 shanghai jiao to...

作者

  • 16 篇 zhang yan
  • 15 篇 eldar yonina c.
  • 13 篇 liu dong
  • 13 篇 zhang lei
  • 12 篇 li li
  • 12 篇 liu xin
  • 12 篇 gabbouj moncef
  • 12 篇 zhai guangtao
  • 11 篇 li yang
  • 11 篇 wang yan
  • 10 篇 yang bin
  • 10 篇 wang wei
  • 10 篇 arguello henry
  • 9 篇 kamata sei-ichir...
  • 9 篇 li sumei
  • 9 篇 liu ying
  • 9 篇 yang yang
  • 9 篇 liu hongwei
  • 9 篇 lian qiusheng
  • 9 篇 sohn kwanghoon

语言

  • 8,772 篇 英文
  • 257 篇 中文
  • 228 篇 其他
  • 37 篇 法文
  • 37 篇 土耳其文
  • 5 篇 俄文
  • 2 篇 德文
  • 2 篇 朝鲜文
  • 1 篇 西班牙文
  • 1 篇 日文
  • 1 篇 斯洛文尼亚文
检索条件"任意字段=Neural and Stochastic Methods in Image and Signal Processing"
9347 条 记 录,以下是291-300 订阅
排序:
Building Ensemble of Deep Networks: Convolutional Networks and Transformers
收藏 引用
IEEE ACCESS 2023年 11卷 124962-124974页
作者: Nanni, Loris Loreggia, Andrea Barcellona, Leonardo Ghidoni, Stefano Univ Padua Dept Informat Engn DEI I-35122 Padua Italy Univ Brescia Dept Informat Engn DII I-25123 Brescia Italy
This paper presents a study on an automated system for image classification, which is based on the fusion of various deep learning methods. The study explores how to create an ensemble of different Convolutional Neura... 详细信息
来源: 评论
Physics-Inspired Compressive Sensing: Beyond deep unrolling
收藏 引用
IEEE signal processing MAGAZINE 2023年 第1期40卷 58-72页
作者: Zhang, Jian Chen, Bin Xiong, Ruiqin Zhang, Yongbing Peking Univ Shenzhen Grad Sch Shenzhen 518055 Peoples R China Peking Univ Comp Applicat Technol Shenzhen Grad Sch Shenzhen 518055 Peoples R China Peking Univ Sch Comp Sci Beijing Peoples R China Harbin Inst Technol Shenzhen Comp Sci & Technol Shenzhen 518055 Peoples R China
As an emerging paradigm for signal acquisition and reconstruction, compressive sensing (CS) achieves high-speed sampling and compression jointly and has found its way into many applications. With the fast growth of de... 详细信息
来源: 评论
Super-Resolution neural Radiance Field via Learning High Frequency Details for High-Fidelity Novel View Synthesis
收藏 引用
IEEE signal processing LETTERS 2024年 31卷 466-470页
作者: Lee, Han-nyoung Kim, Hak Gu Chung Ang Univ Dept Image Sci & Arts GSAIM Seoul 06974 South Korea
While neural rendering approaches facilitate photo-realistic rendering in novel view synthesis tasks, the challenge of high-resolution rendering persists due to the substantial costs associated with acquiring and trai... 详细信息
来源: 评论
A Review of Single image Super Resolution Techniques using Convolutional neural Networks
收藏 引用
MULTIMEDIA TOOLS AND APPLICATIONS 2024年 第10期83卷 29741-29775页
作者: Dixit, Monika Yadav, Ram Narayan Maulana Azad Natl Inst Technol Dept Elect & Commun Engn Bhopal Madhya Pradesh India
Single image Super- Resolution (SISR) is a complex restoration method to recover high-resolution (HR) image from degraded low-resolution (LR) form. SISR is used in many applications, such as microscopic image analysis... 详细信息
来源: 评论
Elastic Supernet with Dynamic Training for JPEG steganalysis
收藏 引用
signal processing 2025年 236卷
作者: Li, Qiushi Tan, Shunquan Li, Bin Huang, Jiwu Shenzhen MSU BIT Univ Fac Engn Guangdong Lab Machine Percept & Intelligent Comp Shenzhen 518116 Peoples R China Shenzhen Univ Guangdong Prov Key Lab Intelligent Informat Proc Shenzhen 518060 Peoples R China Shenzhen Univ Shenzhen Key Lab Media Secur Shenzhen 518060 Peoples R China
JPEG is the predominant image format across social networks, serving as a prime cover medium for image steganography. However, previous deep learning models for JPEG steganalysis heavily rely on domain expertise and t... 详细信息
来源: 评论
Noise2Variance: Dual networks with variance constraint for self-supervised real-world image denoising
收藏 引用
IET image processing 2024年 第12期18卷 3251-3261页
作者: Tan, Hanlin Liu, Yu Zhang, Maojun Natl Univ Def Technol Coll Syst Engn Changsha 410073 Peoples R China
image denoising aims to restore a clean image from a noisy image. Traditional methods utilizing convolutional neural networks (CNN) for denoising are trained using pairs of noisy and clean images to comprehend the tra... 详细信息
来源: 评论
Design Space Exploration of CNN Accelerators based on GSA Algorithm
Design Space Exploration of CNN Accelerators based on GSA Al...
收藏 引用
9th International Conference on signal and image processing (ICSIP)
作者: Xie, Zheren Dai, Kui Wu, Zhilin Wang, Jinyue Lu, Xin Liu, Shuanglong Hunan Normal Univ Key Lab Low Dimens Quantum Struct & Quantum Contr Key Lab Phys & Devices Postmoore Era Coll Hunan Prov Changsha Peoples R China
Convolutional neural Networks (CNNs) exhibit exceptional performance within the image processing domain. The acceleration of convolutions for CNNs has consistently represented a focal point within machine learning har... 详细信息
来源: 评论
JOINT DEMOSAICING AND DENOISING WITH DOUBLE DEEP image PRIORS  49
JOINT DEMOSAICING AND DENOISING WITH DOUBLE DEEP IMAGE PRIOR...
收藏 引用
49th IEEE International Conference on Acoustics, Speech, and signal processing (ICASSP)
作者: Li, Taihui Lahiri, Anish Dai, Yutong Mayer, Owen Univ Minnesota Comp Sci & Engn Minneapolis MN 55455 USA Sony Corp Amer R&D US Lab San Jose CA USA
Demosaicing and denoising of RAW images are crucial steps in the image signal processing pipeline of modern digital cameras. As only a third of the color information required to produce a digital image is captured by ... 详细信息
来源: 评论
MDCCM: a lightweight multi-scale model for high-accuracy pavement crack detection
收藏 引用
signal image AND VIDEO processing 2025年 第6期19卷 1-16页
作者: Gu, Zhonglin Li, Tao Xiao, Qiang Chen, Jing Ding, Guangen Ding, Hongwei Yunnan Univ Sch Informat Kunming 650504 Yunnan Peoples R China Yunnan Prov Highway Network Toll Management Co Ltd Kunming 650103 Yunnan Peoples R China
Effective crack detection is vital for pavement safety and durability. In recent years, deep learning methods have achieved promising results in automated crack detection. However, advanced large-scale convolutional n... 详细信息
来源: 评论
Object detection in unfavourable weather conditions using CNN-diffusion neural networks
收藏 引用
signal image AND VIDEO processing 2025年 第7期19卷 1-12页
作者: Madhan, K. Shanmugapriya, N. Dhanalakshmi Srinivasan Univ Dept Comp Sci & Engn Trichy Tamilnadu India
Object detection in unfavourable weather conditions presents significant challenges due to reduced visibility, increased noise, and frequent occlusions, limiting the effectiveness of conventional methods. This paper i... 详细信息
来源: 评论